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Executive Summary 

This document, Deliverable D4.9 "Uncertainty Quantification" outlines the efforts 

towards uncertainty quantification (UQ) within the HiDALGO2 project. 

UQ evaluates how uncertainties in model inputs or parameters affect the outputs 

simulations or experiments. The different HiDALGO2-relevant UQ methods are 

discussed in Chapter 2. Typically, an uncertainty quantification study requires a large 

number of simulations to achieve statistically significant results, which demands a large 

computational effort. To reduce the computational footprint, the use of surrogates 

comes into place, which are reduced-order models that can reproduce the behaviour 

of the full simulation while being computationally less expensive. Surrogates and other 

UQ tools are described in Chapter 3. An overview of how each pilot use case in 

HiDALGO2 is incorporating UQ is given in Chapter 4. 

Two pilots have partially completed UQ and SA analysis, which provided valuable 

insights about their simulations and the workflow. The other pilots have identified their 

major sources of uncertainty and are working on the results. 

This document is part of Work Package 4 (WP4) and interact with other tasks as WP4.3 

(AI for Global Challenges) and WP3.4 (Ensemble Scenarios). The uncertainty 

quantification studies in this deliverable use some components already described in 

other project deliverables (e.g. D3.7 [1], D4.3 [2]). 
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1 Introduction 

Uncertainty quantification (UQ) evaluates how uncertainties in model inputs or 

parameters affect the outputs of interest in computational and experimental contexts. 

It encompasses two primary methodologies: forward and inverse uncertainty 

quantification. In forward uncertainty propagation, input uncertainties are first 

characterized, then propagated through a computational model, and the resulting 

outputs are statistically analysed. In contrast, inverse uncertainty quantification begins 

with uncertain responses, often experimental observations, which are propagated 

backward through the model to infer the associated input uncertainties. This inverse 

approach is frequently used for tasks like parameter estimation and model calibration. 

The focus of this work is on forward uncertainty propagation. 

Uncertainty in model inputs can be categorized as aleatory or epistemic. Aleatory 

uncertainty represents irreducible variability inherent in the system or environment and 

is typically described using probabilistic methods, such as the statistical distribution of 

population height. Epistemic uncertainty, on the other hand, arises from a lack of 

knowledge or incomplete information about inputs and is often expressed using 

interval-based approaches or subjective probability distributions. While aleatory 

uncertainty is intrinsic to the system and cannot be reduced, epistemic uncertainty may 

diminish with improved data or understanding. 

An uncertainty quantification study typically involves a large number of simulations to 

achieve statistically significant results, which can be computationally intensive. To 

reduce the computational cost, one effective approach is to use surrogates—reduced-

order models that replicate the behaviour of the full simulation. 

In summary, uncertainty quantification is a powerful tool to study how uncertainties in 

model inputs affect the results of simulations, however with a large computational 

footprint. 

1.1 Purpose of the document 

This Deliverable D4.9 “Uncertainty Quantification” is prepared in the context of WP4 

and provides information about the methods and technologies developed for 

uncertainty quantification. Also, the uncertainty quantification studies identified for the 

different pilot test cases are described in this document.  

1.2 Relation to other project work  

The uncertainty quantification studies described in this deliverable use tools and 

methods developed in tasks T3.3 (Ensemble Scenarios) and T4.3 (Artificial Intelligence 
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for Global Challenges). These tools and methods are part of the deliverable series 

D3.7 [1], D3.8 (future reference) “Ensemble Scenarios for Global Challenges”, and 

D4.3 [2], D4.4 and D4.5 (future reference) “Advances in HPDA and AI for Global 

Challenges”. 

1.3 Structure of the document 

This document is structured in 3 major chapters and a conclusion. 

The current Chapter 1 introduces and defines uncertainty quantification and explains 
why HiDALGO2 simulations need it. Chapter 2 delineates the methodological 
principles of uncertainty quantification studies. Chapter 3 presents the methods and 
technologies used in the pilot use cases of HiDALGO2 for uncertainty quantification 
studies. Chapter 4 discusses the results or the plans of uncertainty quantification 
studies in each HiDALGO2 pilot use case. Finally, the Conclusion summarizes the 
report. 
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2 Methodologies for Uncertainty Quantification 

This chapter describes the methods used in uncertainty quantification studies in 

HiDALGO2.  

Computer simulations have become indispensable tools in a wide range of fields, 

including engineering, physics and climate science, fields related to HiDALGO2. By 

solving complex mathematical models, these simulations provide critical insights into 

systems that are often too expensive, risky, or impractical to study experimentally. 

However, the predictive power of any simulation is inherently limited by uncertainties. 

These uncertainties may have various sources, including imprecise input parameters, 

numerical approximations, and incomplete understanding of the modelled processes. 

As simulations play an increasingly vital role in decision-making processes, studying 

these uncertainties is crucial to ensure the reliability, accuracy, and robustness of their 

predictions. This is where uncertainty quantification (UQ) fits in. 

UQ is the systematic process of identifying, characterizing, propagating, and analysing 

uncertainties in computational and experimental models. By rigorously addressing 

these uncertainties, UQ provides a framework for quantifying confidence in simulation 

results, which is essential for risk assessment, optimization, and design under 

uncertainty. 

For a comprehensive review of UQ methods in engineering, we refer readers to Haldar 

and Mahadevan [3]. 

2.1 The Role of Uncertainty Quantification in Computer Simulations 

In computer simulations, models aim to approximate reality through a combination of 

physical laws, empirical data, and engineering assumptions. While these models 

provide valuable predictions, they are rarely perfect representations of the real world. 

There are inherent uncertainties in the modelling process, including: 

• Input Uncertainties: Parameters such as material properties, boundary 

conditions, or environmental factors may be imperfectly measured or inherently 

variable. For instance, wind velocity in atmospheric models is subject to natural 

variability. 

• Model Uncertainties: Simplifications or approximations in the mathematical 

representation of a system may exclude certain physical processes or 

interactions. 

• Numerical Uncertainties: Discretisation errors, convergence tolerances, and 

other numerical artefacts can affect simulation outputs. 
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• Experimental Uncertainties: Experimental data used for calibration or validation 

often carry their own uncertainties. 

Without addressing these uncertainties, the outputs of simulations may appear precise 

but could be misleading or unreliable. Uncertainty quantification provides tools to 

understand the impact of input uncertainties on simulation outputs. This enables 

decision-makers to quantify risks, optimize designs, and prioritize areas where 

additional data or modelling effort is most needed. 

2.2 Methodologies in Uncertainty Quantification 

UQ methods can be broadly classified into two main approaches: forward uncertainty 

quantification and inverse uncertainty quantification, where each serves distinct 

purposes and involves different techniques. In HiDALGO2 we are focused on forward 

UQ. 

2.2.1. Forward Uncertainty Quantification 

In forward UQ, the primary goal is to propagate uncertainties in model inputs through 

the simulation to assess their impact on the outputs. The process typically begins by 

characterizing input uncertainties using either probabilistic methods, where probability 

density functions derived from the data are employed, or non-probabilistic techniques 

such as intervals or fuzzy sets.  

The uncertainties are then propagated through the computational model using various 

methods. Monte Carlo Simulations use random sampling for reiterated model 

evaluations, offering high accuracy at an also high computational cost. Alternatively, 

Stochastic Collocation strategically selects sample points to approximate output 

uncertainty with less computational demand, while Polynomial Chaos Expansion 

represents outputs as a series of orthogonal polynomials. Finally, the resulting outputs 

are statistically analysed to compute metrics such as mean, variance, and confidence 

intervals, providing a comprehensive summary of the system’s behaviour under 

uncertainty. 

Forward UQ is particularly useful for sensitivity analysis, where the aim is to identify 

which input uncertainties have the most significant impact on the outputs. It also 

supports robust design optimization by ensuring that designs perform reliably across a 

range of uncertainties. 

2.2.2. Inverse Uncertainty Quantification 

Inverse UQ method, in contrast, focuses on deducing input uncertainties from 

observed data. This is often used for parameter estimation, model calibration, and data 

assimilation. The process involves defining observations (typically experimental or field 

data) and prior knowledge of the model parameters. Then the Inverse Problem is 
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solved, in order to determine the input parameter distributions that best explain the 

observed data. Bayesian inference is a common approach, where a prior distribution 

is updated using likelihood functions to obtain a posterior distribution of the inputs. 

Finally, the uncertainty in inputs is quantified, as the posterior distribution provides 

insight into the uncertainty associated with the inferred inputs. Both data noise and 

modelling assumptions should be accounted for. 

Inverse UQ is especially suited for calibrating complex models, especially when direct 

measurements of input parameters are unavailable or infeasible. However, inverse 

problems are often ill-posed, meaning they may have non-unique or unstable solutions. 

Advanced techniques such as regularization and Bayesian frameworks help address 

these challenges.  

2.3 Classifications of Uncertainty 

A key aspect of UQ is understanding the nature of uncertainties, which can be broadly 

divided into two categories: 

• Aleatory Uncertainty, also known as irreducible uncertainty, arises from 

inherent variability in the system or environment. For example, the random 

fluctuations in wind velocity or the natural variability in material properties 

represent aleatory uncertainty. This type of uncertainty is considered intrinsic to 

the system and cannot be reduced, though its effects can be modelled 

probabilistically. 

• Epistemic Uncertainty, or reducible uncertainty, originates from a lack of 

knowledge or incomplete information about the system. Examples include 

insufficient data on material behaviour or uncertainty about the validity of a 

model under new conditions. Unlike aleatory uncertainty, epistemic uncertainty 

can be reduced through better data acquisition, refined models, or additional 

experiments. 

In practice, real-world problems often involve a combination of aleatory and epistemic 

uncertainties. Separating and addressing these uncertainties is critical to ensure robust 

and interpretable UQ results. 

2.4 Challenges in Uncertainty Quantification 

UQ faces several challenges in its implementation in computational simulations. One 

major hurdle is computational cost, as many UQ methods, such as Monte Carlo 

simulations, require a large number of model evaluations, which becomes especially 

difficult for high-fidelity simulations with long runtimes. This issue is exacerbated in 

high-dimensional input spaces, where the computational demand increases 
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exponentially with the number of uncertain parameters, which is often referred to as 

“the curse of dimensionality”. Additionally, the complexity of models, such as those 

involving non-linear, stochastic, or multi-physics phenomena (and which are focus of 

HiDALGO2), introduces further difficulties, as these systems may demand advanced 

techniques for both uncertainty propagation and inverse analysis. Scarcity of data 

compounds these challenges, particularly for epistemic uncertainties, where limited 

information makes it hard to construct reliable probability distributions or intervals for 

input parameters. Finally, achieving validation and verification is critical for ensuring 

trustworthy UQ results, requiring rigorous comparison with experimental data and 

careful verification of the numerical methods employed. Addressing these challenges 

is essential for the applicability of UQ in practical scenarios. 

2.5 Advances in Uncertainty Quantification 

To address these challenges, recent advancements in UQ have focused on enhancing 

computational efficiency and improving the integration of UQ with machine learning 

and optimization. The use of surrogate models (reduced-order models) significantly 

reduces the computational cost, while approximating the behaviour of high-fidelity 

simulations. Examples include Gaussian process models, neural networks, machine 

learning (ML) models and polynomial chaos expansions. Also, the use of adaptive 

sampling techniques such as adaptive Monte Carlo or sparse grid methods, that 

dynamically allocate computational resources to regions of the input space that 

contribute most to uncertainty, can save computational resources. Also, the use of 

parallel computing makes it possible to perform large-scale UQ studies more 

efficiently and in a timely manner. 

2.6 Summary 

Uncertainty Quantification enables simulations to account for and communicate their 

inherent uncertainties. By characterizing, propagating, and analysing uncertainties, 

UQ enhances the reliability and interpretability of simulation results. Despite the 

challenges of computational cost, high-dimensional input spaces, and data scarcity, 

advancements in surrogate modelling, adaptive sampling, and high-performance 

computing are pushing the boundaries of the use of UQ in simulation workflows as the 

ones in HiDALGO2.  
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3 Technologies for Uncertainty Quantification 

This chapter describes the various tools and technologies used in the UQ studies in 

HiDALGO2.  

3.1 Uncertainty Quantification Tools 

3.1.1 Urban Air Project (UAP) 

In the Urban Air Project (UAP) pilot, the main UQ tools are natively implemented into 

the solutions. To reduce the code dependencies and improve the performance of the 

overall solution, UQ methods are constructed and state-of-the-art solutions (of Python, 

or R-packages) are (re-)implemented in the UAP software. 

One of the CFD solvers used in UAP, RedSim (Reduced Simulations), has inherently 

the possibility to run reduced order models (ROMs). These ROMs are considered 

surrogate models for the forward UQ. In RedSim the Proper Orthogonal Decomposition 

(POD) for time-stepping has been implemented. The POD module of RedSim uses 

offline the OpenMPI + CUDA implementation of RedSim to collect the snapshot matrix 

X from the simulation results for several parameters, then still offline the singular value 

decomposition (SVD) of X, and construct a U projection matrix from the left singular 

vectors corresponding to the largest singular values and store U for the online phase. 

In the online phase of the POD module of RedSim the time-stepping is computed in 

the projected space of the image set of U. 

Concerning ensemble generation, the MathSO portal has an ensemble generating 

feature with support for parameter sweeping for selected variables for instances that 

are implemented in the MathSO portal. This functionality applies for the UQ of variables 

with a small number of degrees of freedom (e.g. when the inlet wind is characterized 

by some wind direction and speed values only). 

For the evaluation of ensemble run results for the sake of UQ, some scoring methods 

are used, in particular the CRPS (Continuous Ranked Probability Score, see [17],[18]). 

The CRPS is a widely used metric for evaluating probabilistic forecasts. It measures 

the difference between the forecast Cumulative Distribution Function (CDF) and the 

actual outcome—typically represented as a step function—and is defined as the 

integrated squared error over all possible values. For a discrete forecast distribution, 

the CRPS can be computed using the formula 

CRPS(𝐹, 𝑦) =∑𝑝𝑖|𝑥𝑖 − 𝑦|

𝑁

𝑖=1

−
1

2
∑∑𝑝𝑖𝑝𝑗|𝑥𝑖 − 𝑥𝑗|

𝑁

𝑗=1

𝑁

𝑖=1

, 

where 𝑥1, 𝑥2, … , 𝑥𝑁 are the possible forecast outcomes, 𝑝1, 𝑝2, … , 𝑝𝑁 are their 

probabilities, and 𝑦 is the observed value. 
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For CRPS generalizes the concept of absolute error from deterministic forecasts to 

probabilistic ones, with lower scores indicating a forecast that more closely matches 

the observed outcome. 

3.1.2 Urban Building (UB) 

In the Urban Building (UB) pilot, we decided to integrate Uncertainty Quantification 

(UQ) directly into the simulation workflow rather than treating it as an external, post-

processing step. This decision is motivated by the large number of uncertain 

parameters, arising from design assumptions, physical model parameters, 

construction workmanship, occupant behaviour, and environmental conditions, that 

can significantly affect simulation results. We leverage two primary tools to manage 

these uncertainties: 

1. OpenTURNS 

OpenTURNS (Open-source Treatment of Uncertainties, Risks, and Statistics, see 

Deliverable 3.7 [1] and [11]) is an open-source C++/Python library providing a rich 

set of functionalities for UQ, sensitivity analysis, and probabilistic modelling. 

• Forward Propagation: We use OpenTURNS to define our uncertain inputs 

(e.g., parameter distributions, correlations) and to run sampling-based 

ensemble simulations (Monte Carlo, quasi-random, etc.). 

• Sensitivity Analysis: Built-in methods (e.g., Sobol indices, FAST) help us 

identify which parameters dominate the variance in simulation outputs. 

• Python Wrappers: Although implemented in C++, OpenTURNS has a 

Python API that simplifies integration into existing workflows and HPC 

environments. 

2. Feel++ 

Feel++ (Finite Element Embedded Language in C++) [12] is our in-house high-

performance framework for simulations based on Partial Differential Equations 

(PDEs) (see Deliverable 3.7 [1]). It features: 

• Finite Element Methods: A domain-specific embedded language closely 

mirroring the mathematical formulation of PDEs. 

• Parallel Execution: MPI-based parallelism to manage ensemble runs (i.e., 

repeated simulations with varied input parameters) for large-scale 

simulations. 

• Planned UQ Integration: While we already perform ensemble runs in Feel++, 

we intend to extend the framework with native UQ functionalities—such as 

sampling and statistical post-processing—that integrate seamlessly with 

OpenTURNS or other libraries. 
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By combining OpenTURNS (for defining uncertainties and processing outputs) with 

Feel++ (for large-scale PDE simulations), we aim to streamline the entire UQ workflow 

in a single, HPC-enabled environment. A more detailed description of these tools and 

their planned integration can be found in Deliverable 3.7 [1]. 

3.1.3 Renewable Energy Sources (RES) 

The mUQSA platform [10] is developed by the Poznan Supercomputing and 

Networking Center with the main aim to comprehensively support Uncertainty 

Quantification and Sensitivity Analysis of computational models. The mUQSA provides 

a user-friendly graphical interface for both scenario definition and results analysis, as 

well as the full automation of uncertainty quantification and sensitivity analysis 

execution on HPC resources. This tool is described in detail in Deliverable 3.7 [1]. 

3.1.4 Wildfires (WF) 

The WF pilot use case is under integration with the built-in QCC-PilotJob mechanism 

to launch simulations associated with possible weather conditions as well as different 

ignition points compatible with the observations, in order to estimate the uncertainty in 

the evolution of the fire spread and the smoke dispersion. New statistical functions to 

analyse the spatial uncertainty are foreseen with the help of CDO. CDO (Climate Data 

Operators) is a command line suite or library for manipulating and analysing climate 

data from the Max Plank Institute. More details about the use of QCC-PilotJob in the 

WF pilot are found in Deliverable 3.7 [1]. 

3.1.5 Material Transport in Water (MTW) 

The waLBerla framework [13] is an in-house developed software, based on lattice 

Boltzmann methods (LBM), which is designed for large-scale flow simulations on 

EuroHPC clusters. It enables multiple simulations by varying particle shapes and input 

parameters to analyse their impact on flow properties.   The simulation results are used 

to evaluate variations in velocity, temperature, and heat flux. The simulation outputs 

are also used to train surrogate models which aid in faster flow predictions. For 

surrogate modelling, we plan to explore Deep Ensembles [14] and Monte Carlo 

Dropout [15] (MC Dropout). Deep Ensembles improve uncertainty estimation by 

training multiple independent neural networks and aggregating their predictions. This 

method effectively captures epistemic uncertainty through model disagreement and 

can also address aleatoric uncertainty when explicitly modelled. Monte Carlo Dropout 

(MC Dropout) approximates Bayesian inference by keeping dropout active during 

inference and performing multiple forward passes. It efficiently captures epistemic 

uncertainty without requiring multiple trained models.  
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3.2 Surrogate Tools 

3.2.1 Relexi 

One of the possible solutions to the very high computational demand of a UQ study is 

the use of surrogates. Machine learning (ML) models are one alternative, where the 

user can substitute one part of the workflow or the whole simulation by a neural 

network. 

Among other initiatives to introduce AI capabilities in HiDALGO2 [2], an interface to the 

CFD OpenFOAM1 to the tool Relexi [4][1][5][6][7] is being developed. Relexi is a 

Reinforcement Learning (RL) framework, with RL meaning an intelligent agent that 

uses ML and optimal control strategies to maximize a reward signal. The framework 

currently supports the high-order HPC flow solver FLEXI [8]. Relexi is built upon 

TensorFlow and its RL extension TF-Agents, while the communication and data 

handling is done using SmartSim package with its SmartRedis communication client 

[9]. 

SmartSim is made up of two parts: (i) the SmartSim workflow library, that launches the 

ML infrastructure using e.g. PyTorch or TensorFlow on HPC systems alongside the 

user workloads and (ii) SmartRedis, which connects the HPC workloads to the ML 

infrastructure at runtime. SmartRedis supports applications written in Fortran, C, C++ 

and Python, and sends the data to a remote SmartSim infrastructure to execute the 

ML models and scripts on GPU or CPU. 

OpenFOAM is currently used by the HiDALGO2 pilots UAP and WF. If the results of 

the coupling and the use of the ML models are positive with OpenFOAM, other solvers 

could also be integrated into Relexi. 

3.2.2 EasySurrogate 

Yet another possible tool to provide a surrogate for the part of a workflow or complete 

simulation is EasySurrogate2. EasySurrogate is a toolkit dedicated to simplifying the 

construction of surrogate models – swift approximations of complex (multiscale) 

simulations. A key feature is its inclusion of Deep Active Subspace (DAS) surrogates, 

which leverage neural networks alongside active subspace principles to effectively 

 

 
1 https://www.openfoam.com/ 
2 https://github.com/wedeling/EasySurrogate 
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reduce dimensionality. Furthermore, EasySurrogate incorporates quantized softmax 

networks – a neural-network-based bootstrapping technique that resamples observed 

data. This method is particularly beneficial for creating surrogate models of subgrid-

scale elements, commonly encountered in simulations of turbulent flows 

EasySurrogate is coupled with EasyVVUQ (part of the mUQSA toolkit) to train a model 

based on UQ ensembles. The feasibility of this use is analysed by a pilot RES use 

case. 
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4 Uncertainty Quantification for Global Challenges 

This chapter presents how individual HiDALGO2 use cases incorporate uncertainty 

quantification into their workflow. 

4.1 Urban Air Project (UAP) 

The Urban Air Project (UAP) pilot simulate the wind flow and gaseous air pollutants’ 

concentrations in cities (5–8-kilometre horizontal length and 1-2 kilometre vertical 

domains) under high resolution (1-2-meter spatial resolution at ground level and 

unsteady in time for 1 day to 1 year) and then computes society-relevant indicators like 

wind-comfort measures, annual exceedance numbers of air-quality limit values, urban 

planning-related indicators and more. The UAP simulations use data from global and 

regional weather and air quality forecasts, local weather and air quality measurements, 

urban geometry 3D models, and emission sources. The input data in UAP has various 

degrees of freedom, depending on the modelling level: in a coarse model the weather 

data used for boundary conditions are modelled by some real numbers (inlet wind 

speed, wind direction) while for a detailed model by a scalar field with many or large 

number of variables (e.g. weather data of a regional weather model, or the initial state 

on a large-scale mesh). 

These data sources bring uncertainties into each component of the UAP simulation: 

epistemic uncertainties for the initial and boundary conditions from the global and 

regional weather simulations, aleatoric ones from the geometry models (e.g. position 

of buildings, physical parameters of the pollutants).  

To quantify the uncertainties of the UAP variables, currently the UAP uses the classical 

methodology of UQ, namely: 

• create ensembles for the parameter or variable under UQ,  

• execute the simulation with a surrogate model for the ensemble individuals, and 

then  

• evaluate the ensemble run by using a suitable scoring.  

Concerning the ensemble generation in the cases of variables with small degree of 

freedom, like the coarse model of the wind boundary condition, a sampling with Sobol 

or other Monte-Carlo based methods is used. For a large-scale variable (e.g. initial 

state of the state variables in a large-scale simulation) a finite number of perturbations 

of the variable are used. In the latter case either the perturbations are given with the 

external data (e.g. all 50 perturbations with the ECMWF model values) or UAP 

generate itself the perturbations. In the latter case, the methodology of generating 

singular vectors of a linearized forecast propagator shall be implemented (for the 
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detailed methodology in the case of operational weather forecasts of ECMWF, see 

Error! Bookmark not defined.[16]; for the UQ of UAP initial state an analogue of this 

approach will be constructed and implemented during the next phase of HiDALGO2). 

For a surrogate model, the POD and its variants are used, see the description in 

Section 3.2. In HiDALGO2, a novel interpolation technique and a deep-learning model 

are currently being developed based on the POD simulations, to address the curse of 

dimensionality in the linear algebra computations of the POD. 

As a preliminary result of the UQ for the air quality computation of UAP, see Figure 1. 

This result is taken by the OpenFOAM computations of the main value on a fine mesh 

for the city of Győr; in the ensemble 50 perturbations of the simulated boundary 

condition stand. The corresponding CRPS value was 13.4 for a variable of size 10^2, 

which shows that the result is moderate and both the simulation and the UQ 

methodology have to be improved. 

 

Figure 1. Pollutant concentration values according to the base and some perturbed simulations 
for UAP in a case study for the city of Győr.  

4.2 Urban Building (UB) 

The primary objective of the UB pilot is to simulate energy consumption and thermal 

comfort in urban buildings. The complexity of physical processes, the variability of 

occupant behaviour, and the uncertainties in building envelope properties make UQ a 

critical component for reliable simulation results and robust decision-making. Studies 

have shown that occupant behaviour often has a larger impact on energy calculations 

than local variability in weather data, emphasizing the need to handle these 

uncertainties carefully. 

Although a full UQ study is ongoing (with preliminary steps already in progress), the 

main categories of uncertain parameters we have identified include: 
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• Aleatoric Uncertainties 

These uncertainties have known or assumed probability distributions: 

− Weather Conditions: Outdoor temperature, solar irradiance, and wind speed 

are derived from historical data or typical meteorological year datasets. 

Variations can also come from synthetic weather data. 

− Occupant Schedules: Randomness in presence or usage patterns (e.g., 

working hours, weekend behaviour) introduces stochastic variation in 

building energy demand. 

• Epistemic Uncertainties 

These stem from a lack of knowledge or incomplete information regarding model 

parameters: 

− Material Properties: Thermal conductivity, heat capacity, or infiltration rates 

can deviate significantly from nominal “catalogue” values due to 

workmanship issues and real-world construction practices. 

− Model Calibration Parameters: Empirical coefficients in heat transfer or 

occupant behaviour models may be based on simplified assumptions and 

thus have limited accuracy. 

4.2.1 Planned Approach 

We employ Feel++ to conduct ensemble runs over distributions of the above uncertain 

inputs. Each simulation is assigned to an MPI group, enabling parallel execution 

without external schedulers. This strategy is essential for large-scale, city-wide energy 

analyses. 

With OpenTURNS, we manage sampling (Monte Carlo, quasi-random, etc.) and 

perform statistical post-processing to compute quantities of interest (e.g., means, 

confidence intervals, Sobol indices). This workflow ensures a robust treatment of 

uncertainties and clarifies which parameters most affect energy consumption and 

thermal comfort. 

The ongoing work include: 

• Data Collection: We continue to gather more data on materials, occupant 

behaviour, and building usage to refine or reduce epistemic uncertainties. 

• Calibration and Validation: We will calibrate our simulation models against real-

world data from actual buildings, thus reducing knowledge gaps and increasing 

model fidelity. 



D4.9 Uncertainty Quantification                                                                          

 

 

Document name: D4.9 Uncertainty Quantification Page:   24 of 32 

Reference: D4.9 Dissemination:  PU Version: 1.0 Status: Final 

 

 

 

• Integrated Tooling: Plans include extending Feel++ for direct UQ capabilities—

such as advanced sampling algorithms and automated post-processing—thus 

minimizing the need for external scripts. This tight integration will streamline 

HPC workflows and enable near-real-time feedback loops in the future. 

4.2.2 Broader Context and Additional Resources 

Accurate UQ at both building and city scales underpins effective policy-making, retrofit 

decisions, and design strategies. Bayesian approaches are increasingly being 

explored, for example, in Westermann & Evins [19], where Bayesian Deep Learning 

offers uncertainty-aware surrogate models for building energy simulations.  

As we progress with these UQ activities, we will document findings and methodological 

enhancements in subsequent deliverables. Quantifying uncertainties allows us to 

provide more reliable and actionable predictions of energy performance, directly 

informing sustainable and efficient urban development and future coupling with Urban 

Air Pilot or Renewable Energy Sources pilots. 

4.3 Renewable Energy Sources (RES) 

RES pilot activities concentrate on forward uncertainty quantification, i.e. estimating 

the impact of input uncertainties on the simulation results and relationship between 

parameters (sensitivity analysis). The inverse analysis is particularly important to verify 

and validate the model, though it is not considered at this moment. 

UQ can also deliver more application-oriented results. An example is the RES-

damages module, which estimates the potential impact of extreme weather events on 

overhead electrical networks. A case study was conducted in a Polish city, focusing on 

excessive wind speeds, and the detailed results are available in [10]. The workflow 

employed three nested domains, with the outermost domain covering the entire Poland 

at a resolution of 3.6 km, middle domain covering the voivodeship (province) with 800m 

resolution, the innermost domain discretised at a detailed 100-meter spacing covering 

the whole city, and the 33 eta vertical levels (vertical resolution between surface and 

top of the model domain). A custom overhead electrical network was created for this 

study, based on the real electrical network coverage. This high level of detail enabled 

the simulation to generate meteorological results for each individual component of the 

infrastructure. Five distinct electrical lines located in the outskirts and city centre were 

analysed. Ensembles were generated to simulate various wind conditions, including 

direction and speed by the means of the mUQSA toolkit. The wind sector was divided 

into eight directions: N, NE, E, SE, S, SW, W, NW, while the wind speeds were 

assigned uniformly from 1 to 20 m/s. The initial conditions were taken from the Global 
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Forecast System (GFS) forecast data, and then only wind speed and direction were 

updated with the generated values. 

Figure 2 illustrates the wind speeds at which electrical lines are impacted under various 

conditions. The x-axis represents the five electrical lines studied, while the y-axis 

indicates wind speed in m/s. The mean wind speed is relatively low, especially for two 

sites, indicating their lower vulnerability to wind conditions. However, the remaining 

three sites are more susceptible to the impact of wind speed and direction. Only one 

site shows minimal impact, while the others are more vulnerable. Electrical line number 

5 is particularly endangered due to the surrounding terrain, which amplifies the wind 

speed beyond the initial boundary conditions. 

 

Figure 2. RES: Wind speed at different sites  

 

Sensitivity analysis (SA) investigates how analysed uncertainty parameters influence 

simulation results. In RES-damages, SA is used to determine whether wind direction 

or wind speed has a greater impact on wind speed at different sites. Figure 3 illustrates 

the influence of wind speed and direction. 
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Figure 3. RES: Impact of wind speed and direction at different sites  

Overall, wind speed emerges as the most significant factor for all five sites. However, 

the analysis reveals variations in influence. At some sites, such as site number 3, wind 

direction is nearly as influential as wind speed, while at others, like site number 5, wind 

direction has minimal impact on the probability of damage. As expected, higher wind 

speeds increase the vulnerability of electrical lines to damage, regardless of wind 

direction. With a certain margin of error, further analysis could potentially exclude wind 

direction from the uncertainties, as it has a moderate to minor impact on the final wind 

speed at different sites. 

The UQ and SA can support renewable energy source owners and electrical network 

operators in preparing for extreme weather events. By identifying the most vulnerable 

sites, particularly those susceptible to excessive wind speeds, these tools provide 

valuable insights. 

4.4 Wildfires (WF) 

Within the WF Pilot several sources of uncertainty are considered: 

• weather forecast uncertainty, 

• vegetation and field data structure, 

• fire spread models: aleatory and epistemic uncertainty. 
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Uncertainty associated with weather conditions 

This uncertainty has several possible sources:  

• Reliability of the meteorological boundary conditions. Whether using observed 

data or predictions from a meteorological model, there is a random uncertainty 

in the wind, temperature and relative humidity conditions used associated with 

errors in the measuring instruments, in the spatialisation of the data, and in the 

prediction of their future evolution. 

• As the prediction time increases (i.e., predictions further into the future), the 

reliability of the results decreases. For this reason, we use ensembles of 

predictions with several models to identify trends and probabilities. 

• High-precision prediction models based on downscaling processes lose 

reliability as more nested domains are coupled to achieve high resolutions. This 

is a specific issue in high-resolution predictions with mesoscale models like 

WRF, which we use in the HiDALGO2 wildfire pilot. 

 

Uncertainty associated with data and data structure 

Vegetation structure is another important factor contributing to uncertainty. For the 

representation of vegetation, catalogues of forest fuel models are used to represent 

approximately the average conditions of fire behaviour in that type of vegetation. This 

form of representation does not take into account the inter-annual differences in the 

same vegetation mass due to the different meteorology that has influenced its growth. 

In addition, some characteristics are determined by parameters that condition the 

transition between different types of fire, for example in wooded areas the transition 

process from surface fire to crown fire is simulated by the height of the base of the 

crown, which in reality varies from one tree to another.  

Vegetation moisture also contributes to uncertainty. In practice, this is assumed to be 

uniform over relatively large areas, but in reality, this is much more complex, as there 

may be areas within the canopy where moisture is locally higher or lower, especially in 

critical locations. In addition, categorical deterministic rules are applied to estimate 

moisture content instead of probability functions, which adds uncertainty to the 

simulations. 

 
Uncertainty associated with fire spread models. 

As explained in D3.7 Ensemble scenarios for global challenges, spread models are 

another important factor of aleatory and epistemic uncertainty due to both the modelled 

transmission method and the spatial resolution used, that can be partially avoided 

using data assimilation techniques.  
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There are also phenomena that are poorly simulated by the models and whose 

simulation is still in the research phase, as explained in D3.7, such as flying embers, 

fire whirls, eruptive fire behaviour, and pyrocumulus clouds. These phenomena, their 

appearance, and development are difficult to predict and even harder to locate 

geographically, making them the most significant source of uncertainty for firefighting 

operations. 

To address the analysis of these uncertainties, we foresee two types of tests to be 

performed: 

• Ensemble of scenarios to address the quantification of uncertainties associated 

with the operational simulation of forest fires. 

• Uncertainties associated with topographic conditions, fuel type and humidity, 

generation of secondary fires associated with sparks or crown fires.  

4.5 Material Transport in Water (MTW)  

In the current pilot, UQ plays a crucial role in enhancing the robustness of both 

numerical and surrogate models. Accurately assessing uncertainties ensures that 

model predictions remain reliable and applicable across varying conditions. 

For this pilot, there are two primary approaches to quantifying uncertainties. The first 

approach involves numerical simulations where variations in particle shapes are used 

to estimate flow fields, velocity, and temperature distributions. This requires running 

multiple simulations on EuroHPC clusters, allowing for a detailed analysis of how 

particle shape influences key output parameters such as velocity, temperature, and 

heat flux distribution. Understanding the sensitivity of these flow properties to 

geometric variations is essential for optimizing system performance and ensuring 

predictive accuracy in real-world scenarios. 

The second approach focuses on surrogate modelling for flow prediction. UQ is an 

integral part of developing surrogate models, ensuring that they can efficiently predict 

flow properties while accounting for various sources of uncertainty. These uncertainties 

arise from both aleatoric and epistemic sources. 

Aleatoric uncertainties include measurement noise in training data, such as errors in 

velocity, pressure, and temperature measurements, as well as inherent variability in 

physical systems, such as turbulence and unsteady flow behaviour. These 

uncertainties follow probabilistic distributions and cannot be eliminated but can be 

modelled to improve prediction reliability. 

Epistemic uncertainties, on the other hand, arise from limitations in deep learning 

architectures, such as incomplete representations of the underlying physics. 

Additionally, data scarcity can lead to incomplete training datasets, missing flow 
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configurations, and unaccounted boundary conditions, further impacting model 

reliability. These uncertainties can potentially be reduced by refining models or 

incorporating additional data sources. 

The process of UQ in surrogate modelling follows several critical steps. First, 

uncertainties in input parameters, such as inlet velocity, pressure, and boundary 

conditions, are identified and characterized. Inlet velocity distributions represent 

aleatoric uncertainty, while boundary conditions and model parameters often introduce 

epistemic uncertainty due to incomplete knowledge. Then, surrogate models, including 

U-Net [20] and Fourier Neural Operators (FNOs) [21], are trained on diverse datasets 

to capture a wide range of flow scenarios. Once trained, input uncertainties are 

propagated through the model to assess their impact on predicted outputs, with 

probabilistic distributions or confidence intervals quantifying the resulting uncertainties. 

Finally, validation and calibration are performed by comparing surrogate model 

predictions with high-fidelity numerical simulations or experimental data, ensuring the 

robustness and reliability of the model. 

By systematically integrating UQ into surrogate modelling, this approach ensures that 

predictions remain robust and actionable, even under uncertain conditions. This 

framework not only enhances the applicability of surrogate models in complex flow 

simulations but also improves their generalizability across different operational 

scenarios. 
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5 Conclusions 

This deliverable defines Uncertainty Quantification in HiDALGO2 and highlights the 

importance of UQ for the pilot use cases. By incorporating UQ methods, HiDALGO2 

analyses and enhances the quality of the complex simulation models used by the 

pilots. The methodologies and tools outlined in this document show the project's 

commitment to advancing UQ studies. 

The deliverable also illustrates how UQ is integrated into HiDALGO2's various pilot use 

cases, and their use in analysing and improving the quality of the predictions. The 

Urban Air Project (UAP) and Renewable Energy Sources (RES) pilots have partially 

completed UQ and SA analysis. For example, the UQ for the RES pilot provided 

valuable insights about the most vulnerable sites of the electrical network to excessive 

wind speeds. The other pilots have already identified their major sources of uncertainty 

and are working on the results. 

This work will be further developed and expanded upon in the upcoming report, “D4.10 

Uncertainty Quantification,” scheduled for release in M47.  
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