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Executive Summary 

This deliverable presents the current status of scalability, performance optimization, 

and co-design activities across all HiDALGO2 [1] pilot applications on EuroHPC JU 

systems. It builds upon D3.1 [2] and focuses on improvements made during the second 

part of the project (M13-M28). Its main objective is to evaluate how the pilots behave 

on different HPC architectures, identify performance bottlenecks, and prepare the 

applications for extreme-scale benchmarking going into the third part of the project. 

Compared to D3.1, this deliverable analyses a new pilot (MTW) that has been added 

to HiDALGO2, extends benchmarks to new systems, introduces larger and more 

complex scenarios, and explores cross-platform portability through co-design and 

profiling activities. In addition, profiling tools such as Score-P [3] and Cube [4] have 

been applied to gain deeper insights into code-level performance and highlight 

dominant communication or I/O bottlenecks. These insights are now guiding code 

restructuring and optimization efforts, including potential improvements in MPI load 

balancing, communication overlap, and memory usage.  

In conclusion, D3.2 confirms that most pilots have reached a mature benchmarking 

phase, scaling well to thousands of cores. However, further work is still required to 

improve communication efficiency, I/O handling, and portability across heterogeneous 

systems. These aspects will be the focus of follow-up activities in regards to 

benchmarking and optimization. 
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1 Introduction 

1.1  Purpose of the document 

This deliverable documents the benchmarking, optimization, and co-design activities 

for HiDALGO2 pilot applications during the second part of the project (M13–M28). It 

reports the scalability and performance improvement of each pilot on EuroHPC JU 

systems compared to D3.1, identifies new bottlenecks, and evaluates deployment 

portability approaches. The results are used to guide future developments 

optimizations and benchmarking affords for the HIDALGO2 partners.  

1.2 Relation to other project work  

Deliverable D3.2 compares the performance and scalability of HiDALGO2 pilots in the 

16 month period following D3.1, as these are described in deliverables D5.3 “Research 

Advancements for the Pilots (M10)” and D5.4 “Research Advancements for the Pilots 

(M23)”, on the project’s HPC infrastructure, as defined in deliverable D2.4 

“Infrastructure Provisioning, Workflow Orchestration and Component Integration”. 

Deliverable D3.2 drives future activities within WP3 (Exascale Support for Global 

Challenges) and WP5 (Tackling Global Challenges). It is the second of a series of 

reports focusing on scalability, optimisation and co-design activities (D3.1 in M12, D3.2 

in M28, and D3.3 in M47). 

1.3 Structure of the document 

This document is structured in 5 major chapters. 

• Chapter 2 presents the current EuroHPC deployment status for the project’s 

pilots, as well as challenges of acquiring resources and using EuroHPC JU 

systems. 

• Chapter 3 discusses the benchmarking and optimization progress of each 

HiDALGO2 pilot, and presents the updated scalability results. 

• Chapter  4 presents the status of HiDALGO2 KPIs related to benchmarking and 

optimisation activities and summarizes all findings. 

• Chapter  5 summarizes and concludes this deliverable.  
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2 Access to EuroHPC JU supercomputers 

HiDALGO2 works towards the deployment, benchmarking and optimization of the 

HiDALGO2 pilots on all EuroHPC JU [5] systems. For this purpose, HiDALGO2 

requires simplified access to the appropriate amount of resources on all EuroHPC JU 

supercomputers.  

2.1 Challenges and limitations using EuroHPC JU systems 

2.1.1 Limited amount of resources 

Since no special access scheme has been provided for European projects, the current 

standard procedure is still similar to the one described in D3.1, i.e., each HIDALGO2 

partner is required to submit separate proposals for resources to the EuroHPC JU. 

Until now, almost all pilots still leverage the development access scheme, as the 

regular and extreme access schemes are awarded to already mature codes in terms 

of scalability.   

Unfortunately, in 2024 the amount of resources awarded through the development 

access calls were significantly reduced, creating a significant challenge for HiDALGO2. 

More specifically, while in the first year of the project HiDALGO2 pilots were allocated 

10000-15000 node hours per CPU partition, now they receive only 3000-4000 node 

hours; similarly, the allocations of the GPU partitions are awarded between 40% and 

80% of the resources that were allocated in the first year of the project. The limited 

resources create a significant challenge, as all HiDALGO2 pilots are expected to be 

under continuous development and improvement during the lifetime of the project. 

Hence, even though our current efforts demand significantly more computational 

resources for testing, validation and profiling than the first year, they have been actually 

performed with a more constrained budget.  

Additionally, during the reporting period, several hardware issues (especially in newly 

added systems), such as nodes crashing during execution or network issues between 

the nodes, caused draining of the awarded resources. Consequently, pilot executions 

for larger domains and fine-grained resolution requiring many CPU cores easily 

consumed the resources allocated via development calls, leading to continuously 

reapplying for additional resources. For example, the execution of the WF pilot for a 

single benchmark scenario drained all the resources of a single development call on 

the Leonardo DCGP partition; the same was true for the profiling of WF using Score-

P on Karolina.   

Finally, some of the systems (Karolina GPU, MeluXina CPU) experienced 

oversubscription of their resources for some period of time (around 6 months), leading 
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to them being entirely unavailable and not awarding resources to applicants during this 

time. 

2.1.2 System maintenance and large queue times 

Another challenge faced during the reporting period was that many systems 

experienced significant downtimes due to scheduled maintenance or unexpected 

emergencies. All systems regularly experienced downtimes lasting several days and 

even longer in some cases; LUMI was down for almost the entire month of August 

2024, and MeluXina for several weeks in September 2024. Additionally, queuing times 

vary greatly across systems, complicating the process of designing benchmark runs 

and scheduling them on the systems. For example, the waiting time for larger runs 

(requesting thousands of CPU cores) typically amounts to a few days for LUMI and 

VEGA. 

2.1.3 System portability issues 

A recurring challenge across pilots is the portability of workflows between different 

HPC systems, primarily due to variations in environment management and job 

submission practices. While most solver components are portable at the code level, 

the workflow runners and build environments often face system-specific restrictions. 

For instance, some pilots are affected by platform constraints such as filesystem limits 

(e.g., maximum number of files) or restricted external network access required to install 

dependencies. These issues can prevent consistent and automated setup across 

systems. 

In addition, MPI job submission mechanisms differ between platforms. Some systems 

require the use of mpirun or mpiexec for efficient parallel execution, while others 

mandate the use of srun or platform-specific launchers. These inconsistencies 

complicate workflow portability and reduce reproducibility. As a potential solution, 

containerised application environments are being explored to decouple software 

environments from system-specific configurations. While containers offer a promising 

direction for reducing setup complexity and improving cross-system compatibility, most 

pilots did not start with containerized applications and this adds extra migration 

overhead. 

2.2 Awarded EuroHPC JU resources (M13-M28) 

Table 1 provides the EuroHPC JU systems coverage at the end of the second part of 

the HiDALGO2 project. Access to systems has been requested in such a way that 

HiDALGO2 does not focus on a subset of supercomputers and works on as many 

systems as possible, taking into account the implementations of the pilots. Specifically: 
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Table 1. Current EuroHPC JU systems coverage matrix. Green cells indicate that access has 
been awarded, grey cells denote a system that a partner is not planning to request access to, as 
it is either similar to another partition or not suitable for the pilot, and red cells indicate that an 
application was made but the system was unavailable due to lack of resources. RES, UAP, UB, 
WF and MTW columns show the systems requested by each pilot, while the HiDALGO2 column 
shows the systems requested by ICCS for the HiDALGO2 benchmarking activities in general. 

• No pilot has an FPGA-based implementation. 

• RES, UB and WF are currently implemented only for execution on CPUs. 

• UAP uses three different codes. Two of those are implemented solely for 

execution on multiple CPUs, while the third has also a multi-GPU 

implementation, targeting NVIDIA GPUs. 

• MTW supports NVIDIA and AMD GPU architectures and AMD, Intel and ARM 

CPUs. 

Based on the above, no resources have been requested in the FPGA partition of 

MeluXina. Also, Deucalion became available relatively recently and even though some 

pilots requested and have been awarded resources, it has not been the focus of 

benchmarking for this deliverable. 

System Partition RES UAP UB WF MTW HiDALGO2 

Discoverer CPU       

Karolina 
CPU       

GPU       

LUMI 
CPU       

GPU       

Meluxina 

CPU       

GPU       

FPGA       

Vega 
CPU       

GPU       

Leonardo 
CPU       

GPU       

MareNostrum5 
CPU       

GPU       

Deucalion 

CPU-x86       

CPU-ARM       

GPU       
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Table 2. Hardware configuration of CPU partitions used during the reporting period (M13-M28) 

 CPU/node 
Cores/ 
node 

Mem. Interconnect 

Altair 2x INTEL Xeon 8268 48 
192GB InfiniBand @ 200 Gb/s 

Proxima 
2 x Intel Xeon 

Platinum 8480p 
112 

LUMI 

2x AMD EPYC 7H12 128 
256GB 

Slingshot-11 @ 200 Gb/s 

Discoverer 

InfiniBand @ 200 Gb/s 

Karolina 

Vega 

MeluXina 512GB 

Leonardo 2 x Intel Xeon 
Platinum 8480p 

112 
512GB 

MareNostrum5 256GB 

Deucalion 
2x AMD EPYC 7742 128 256GB 

1x FUJITSU A64FX 48 32GB InfiniBand @ 100 Gb/s 

 

Table 3. Hardware configuration of GPU partitions used during the reporting period (M13-M28) 

 CPU Mem. GPU GPU Mem. 

LUMI 
1x AMD EPYC 

7A53 
512 GB 4 AMD MI250x 64 GB HBM2 

Karolina 
2x AMD EPYC 

7763 
1 TB 8x NVIDIA A100 40 GB HBM2 

Meluxina 
2x AMD EPYC 

7452 

512GB 4x NVIDIA A100 80 GB HBM2 
Vega 

2x AMD EPYC 
7H12 

Leonardo 1x Intel Ice Lake 

Deucalion 
2x AMD EPYC 

7742 

MareNostrum5 
2x Intel Xeon 

Platinum 8460Y 
512GB 4x NVIDIA H100 64 GB HBM2 

Table 2 and  

Table 3 present the hardware characteristics of all EuroHPC machines currently 

available via development calls, together with the two PSNC [6] partitions (Altair, 

Proxima) that are available for HiDALGO2. As the Intel-based systems (Leonardo and 

MareNostrum5) became available after D3.1, deployment activities during the 

reporting period focused mainly on them. Further, as most EuroHPC systems feature 

GPU partitions with NVIDIA A100s, the HiDALGO2 pilots focused mainly on Karolina 

(8xNVIDIA A100), LUMI-G (4xAMD MI250x) and MareNostrum5 (4xNVIDIA H100) in 

an attempt to cover different accelerator architectures, taking of course into account 

the effort required for porting their codes.  
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3 HiDALGO2 pilots’ benchmarking 

This section outlines the benchmarking and optimization efforts carried out for the 

HiDALGO2 pilots. Table 4 provides an overview of the current benchmarking status 

across the available EuroHPC JU systems. It is noted that Deucalion became 

accessible only recently and has not yet been the focus of benchmarking. Similarly, 

MeluXina-GPU and Leonardo-GPU share the same architecture as VEGA-GPU, and 

for this reason, they have not been prioritized for deployment at this stage. 

 

Table 4. Current benchmarking coverage of the HiDALGO2 project 

 

3.1 Renewable Energy Sources (RES) 

The Renewable Energy Sources pilot is dealing with three different scenarios: i) 

prediction of energy produced by wind farms, ii) prediction of energy produced by 

photovoltaic (PV) systems, and iii) prediction of the damages to the overhead electrical 

network. In the previous deliverable (D3.1), the focus of benchmarking was on the 

damages scenario for a small domain representing part of a major city in Poland. The 

solver scaled well up to a certain point, after which the relatively small problem size 

per CPU and the communication overheads impaired further scaling. In this 

deliverable, the scalability performance analysis is extended with: i) a larger domain 

System Partition Pilots Benchmarked applications 

Discoverer CPU 2 UAP-FOAM, UAP-Xyst, UB-Ktirio 

Karolina 
CPU 3 UAP-RedSIM, WF-WRF, UB-Ktirio 

GPU 1 UAP-RedSIM 

LUMI 
CPU 4 

RES-EULAG, UAP-FOAM, UAP-Xyst, UAP-
RedSIM, WF-WRF, MTW-walBerla 

GPU 1 MTW-walBerla 

Meluxina 

CPU 1 UAP-FOAM, UAP-Xyst, UB-Ktirio 

GPU  Similar architecture with VEGA-GPU 

FPGA  No pilots with FPGA implementations 

Vega 
CPU 2 WF-WRF, UB-Ktirio 

GPU 1 UAP-RedSIM 

Leonardo 
CPU 2 RES-EULAG, WF-WRF 

GPU  Similar architecture with VEGA-GPU 

MareNostrum5 
CPU 1 MTW-walBerla 

GPU 1 MTW-walBerla 

Deucalion 

CPU-x86  
Will be the focus of benchmarking in the 
next part of the project 

CPU-ARM  

GPU  
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with greater resolution for the damages case, and ii) a new scenario dedicated to PV  

energy production (CBPIO-PV). 

3.1.1 Pilot progress and updates 

The newly introduced scenario, CBPIO-PV, targets the prediction of energy production 

of photovoltaic systems. While it uses the same solver with the damages scenario 

(EULAG), there is a difference in setting up the pre-conditioner and the characteristics 

of some related physics. More specifically, EULAG can account either for the 

orography (terrain elevation) or for the structure of the buildings, with the latter being 

used in CBPIO-PV. Additionally, CBPIO-PV uses a new dataset prepared for the sake 

of this scenario, which depicts part of Poznan, where the PSNC HQ is located, on a 

roof of which a photovoltaic installation exists. The grid resolution is 2136x2363x46 

with horizontal resolution of just 1m, allowing to test EULAG scalability for a far larger 

domain and with greater horizontal resolution. 

For the damages scenario, no code changes were made compared to D3.1.  

3.1.2 Co-design activities 

The RES pilot has pursued two key co-design directions during this period: i) improving 

workflow portability across HPC systems, and ii) evaluating opportunities for improving 

performance through domain decomposition refinements. 

With regard to the former, the RES pilot encountered several deployment and 

portability challenges, especially on the Karolina system, where hardware and 

networking issues prevented the successful completion of benchmarking within the 

allocated node-hours. The RES workflow is currently orchestrated through a runner 

based on Conda, which has proven problematic across HPC systems due to platform-

specific constraints, such as file number limits and Conda-related compatibility issues. 

To address these limitations and improve reproducibility, the team is exploring the 

definition of system-specific configuration recipes or, alternatively, the delivery of a 

dockerised version of the RES application. The final target of these efforts is the 

automated environment setup for benchmarking and production runs, and is still under 

development. 

With regard to the latter, from a performance standpoint, the parallelisation strategy of 

the RES solver is based on a Cartesian grid decomposition across MPI processes. 

Current observations suggest that the default CPU-to-MPI mapping applied 

automatically by the HPC systems provides effective utilisation and good efficiency. 

However, as outlined in the following sections, further improvements may be achieved 

by considering network topology during the domain decomposition process. This could 

help refine the mapping of computational domains to processing elements, potentially 

enhancing performance in communication-heavy phases of the workflow. 
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3.1.3 Performance analysis 

RES - System configuration 

The RES pilot was previously available on LUMI and PSNC’s Altair machine. This 

deliverable focuses on analysing the performance achieved on different CPU vendors, 

AMD (LUMI-C) and Intel CPUs (Leonardo, Altair, Proxima). Table 5 describes the 

programming and runtime environments used in each system. 

 

Table 5. Programming & runtime environment for RES benchmarks  

 Altair LUMI Proxima Leonardo 

Compiler GNU Fortran 
v.6.2.0 

GNU Fortran 
v.10.3.0 

GNU Fortran 
v.11.5.0 

GNU Fortran 
v12.2.0 

Parallel 
framework OpenMPI v.4.1.0 

Cray MPICH 
v.8.1.27 

OpenMPI 
v4.1.7a 

OpenMPI v4.1.6 

Libraries     

NetCDF-C 4.8.1 4.9.2 4.8.1 4.9.2 

NetCDF-Fortran 4.5.3 4.6.1 4.5.3 4.6.1 

HDF5-C 1.12.1 1.14.1 1.12.1 1.14.3 

HDF5-Fortran 1.12.1 1.14.1 1.12.1 1.14.1 

Python 3.10.11 3.9.17 3.10.11 3.10.2 

RES - Benchmarking configuration 

The performance analysis presented in this deliverable was conducted for four 

scenarios, the details of which (grid resolution, horizontal spacing, simulated time, and 

timestep) are presented in Table 6, together with the HPC systems that were used for 

their execution.  

Table 6. Details of RES-EULAG benchmarking scenarios  

Scenario Grid resolution 
Horiz. 

spacing 
Simul. 
time 

Timestep Target systems 

R10-dist 320x252x46 10m 1h 0.05 Leonardo 

R10 320x252x46 10m 1m 0.05 
Leonardo, LUMI, 
Altair, Proxima 

R5 608x472x46 5m 1h 0.05 
Leonardo, LUMI, 
Altair, Proxima 

CBPIO-PV-R1 2136x2363x46 1m 1m 0.005 Leonardo 

RES - Results & analysis 
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The R5 scenario was evaluated in D3.1 for up to 85 nodes on Altair and up to 10 on 

LUMI. Figure 1 depicts the improved scalability for this scenario. It uses up to 128 

nodes (6144 cores) on Altair, 64 nodes (8192 cores) on LUMI, 32 nodes (3584 cores) 

on Proxima and 16 nodes (1792 cores) on Leonardo.  For all systems, the code shows 

relatively good scalability in the initial phase, typically up to around 8-16 nodes. The 

speedup increases almost linearly with the number of nodes, indicating that there is 

sufficient computation to utilize more processors effectively. As the number of nodes 

increases further, the speedup starts to plateau and eventually decrease for some 

systems, which indicates that the increased communication overhead and the 

synchronization costs start posing a serious bottleneck to computation.  

 

Figure 1. RES-EULAG per node speedup for the R5 scenario  

A closer look at system-specific performance reveals major differences in scalability 

behaviour. Proxima demonstrates good scalability up to 8 nodes, showing trends 

similar to Leonardo. However, beyond this point, speedup on Proxima plateaus 

significantly and even declines slightly between 16 and 32 nodes, ultimately achieving 

the lowest speedup among the four tested systems at higher node counts. Since 

Leonardo and Proxima are the two systems with the most recent Intel CPUs, this 

suggests that the RES workload faces architectural constraints on such systems. 

Further analysis is required to better understand these disparities and identify 

optimisation opportunities, which is why Leonardo was chosen for RES profiling and 

further analysis. In contrast, LUMI exhibits the best scalability across all platforms 

tested. It maintains near-linear speedup up to 32 nodes and continues to scale 

relatively well up to 64 nodes before gradually plateauing. The super-linear scaling 

behaviour that was also observed in D3.1. for RES persists, and is attributed to better 

cache utilisation in higher node counts. 
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Figure 2. RES-EULAG per node speedup for the R10 scenario  

Figure 2 depicts the results for the R10 problem. Similarly to the R5 scenario, all 

systems demonstrate relatively initial good scalability. Again, LUMI generally shows 

the best performance and maintains a higher speedup compared to Leonardo and 

Altair across the higher node counts. On the other hand, saturation appears relatively 

sooner compared to R5, which is expected since it uses a 3.5x smaller subdomain and 

therefore is less compute-intensive. 

 

Figure 3. RES-EULAG per node speedup for the CBPIO-RV-R1 fine mesh   

CBPIO-RV-R1 is the new scenario introduced in this deliverable by RES, in order to 

evaluate scalability for very fine meshes using a 1m horizontal resolution. The 

scalability results for Leonardo system are depicted in Figure 3.  
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The pilot exhibits relatively good scalability between 16 and 32 nodes, as the speedup 

nearly doubles as the number of nodes doubles, suggesting efficient utilisation of the 

increased computational resources. There is a significant performance peak around 

48 nodes, achieving a speedup of approximately ~39x, which represents an optimal 

point where the increased parallelism benefits this specific fine mesh size. However, 

beyond this peak, the performance collapses drastically. The speedup plummets to 

approximately 8 at 128 nodes, and adding more nodes after that point does not affect 

performance. We attribute this dramatic performance drop to inter-node 

communication overheads, which become increasingly dominant for this very fine 

mesh at higher node counts, since a significantly larger amount of data needs to be 

exchanged between neighbouring computational units (which are distributed across 

different nodes). This puts a much higher strain on Leonardo’s interconnect and makes 

this problem severely communication-bound. Additionally, the finer mesh leads to 

increased synchronisation between different parts of the computation running on 

different nodes, further contributing to the problem. Consequently, while load balance 

is still relatively good locally, the rate at which data can be transferred between the 

memory systems of different nodes becomes the main bottleneck. 

Compared to the previous scalability plots where saturation occurred more gradually, 

the very fine mesh used here leads to a much more abrupt performance degradation 

after the peak. This highlights the sensitivity of the application's scalability to the 

problem size (mesh resolution) and its impact on communication demands. 

Consequently, for this type of problem, optimisation efforts have to focus on reducing 

and optimising inter-node communication to achieve better scalability. The size and 

management of halo cells (overlapping data regions exchanged between neighbours) 

should be analysed to find whether it can be reduced, or if the update can be performed 

more efficiently. Another approach is to schedule communication in a way that 

minimises network contention. 

Finally, as Leonardo showed very limited scalability compared to LUMI despite being 

a more recent system, we used the R10-dist scenario to assess scalability when using 

all, half, and a quarter of the available CPU cores per node (with unused cores still 

reserved to isolate performance). Figure 4 depicts execution times for various number 

of total CPU cores while using all, half, and a quarter of available CPUs within a node.  

When using all the CPUs of the allocated nodes, execution time decreases as the 

number of cores increases up to around 224 cores. However, beyond this point, the 

execution time starts to increase significantly, indicating poor scalability and 

diminishing returns from adding more full nodes. On the other hand, using half or a 

quarter of the available CPUs per node demonstrates better initial scalability compared 

to the full node configuration. The execution times decrease more consistently as the 

number of cores increases in the lower total core counts, and using 1/4 of available 

CPUs is the less time-consuming execution. The increasing execution time for using 
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all the node’s CPUs at higher total core counts suggests that the overhead associated 

with managing large numbers of cores within fewer nodes becomes a dominant factor. 

 

Figure 4. RES-EULAG execution times for the R10-dist scenario when using 25%, 50% and 
100% of available CPUS per node  

While this issue needs to be further investigated, the potential bottlenecks are: 

• memory contention, as when using larger number of CPUs per node the 

available memory bandwidth for each core is limited; 

• cache coherency, as with larger number of CPUs per node the scope of cache 

coherence is larger, leading to slower data accesses, and 

• inter-node bandwidth, as distributing the work across more nodes can allow for 

better utilisation of the aggregate inter-node bandwidth.  

RES - Profiling 

To verify previously observed performance issues in the RES pilot, Score-P was used 

for profiling and event tracing. Since profiling generates large amounts of data, the 

analysis was limited to the R80 scenario (grid size: 38×30×46, 80 m horizontal 

resolution), running on 8 CPU cores. This setup was chosen to keep the profiling data 

manageable while still capturing key performance characteristics. The profiling output, 

shown in Figure 5, focuses on two main parts of the execution: COM, representing 

computation, and MPI, representing communication. 

The report shows that MPI communication takes up around 46% of the total runtime, 

and is not overlapped by the computation phase. This confirms that communication 

delays are a common issue for this setup. The problem appears to be more visible on 

newer CPU architectures, where faster processors complete the computation more 

quickly, leading to more time spent waiting on communication. These findings suggest 
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that improving communication efficiency and reviewing how the domain is split across 

processors could help improve performance further. 

 

   

Figure 5. RES timing breakdown - profiling summary  

 

To gain more detailed insights into the RES pilot's performance, the Cube software 

was used to analyse the profiling traces. Cube focuses on the functions executed and 

their call paths, providing an overview of the time spent in each function and the 

distribution of tasks across CPUs (MPI processes), which helps identify hotspots in 

both computation and communication. The basic profiling results are shown in Figure 

6. The left panel presents any performance metrics, which for this case has been 

configured to execution time. The middle panel displays the execution tree with all 

called functions and their execution times. The right panel illustrates how each 

function's work is distributed across MPI processes. 

 

Figure 6. RES Cube basic profiling  

In addition, Cube provides several efficiency metrics to help analyse the performance 

of parallel applications. The ones utilized for RES profiling were: 
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• Parallel Efficiency, which indicates the proportion of time spent on computation 

versus communication. For example, a value of 80% means that 80% of the 

total execution time was dedicated to computation, while the remaining 20% 

was spent on communication. 

• Load Balance Efficiency, which measures the uniformity of computational 

workload distribution across MPI processes. It is calculated as the ratio of 

average computation time to the maximum computation time among all 

processes, highlighting any imbalance in workload distribution. 

• Communication Efficiency, which assesses the impact of communication 

overhead on overall performance. It reflects the proportion of time spent in 

communication routines relative to computation, identifying inefficiencies due to 

excessive communication time. 

 

Table 7. RES profiling breakdown of efficiency metrics per function  

Function Time Parallel Eff. Load Balance Eff. Communication Eff. 

tinit 8% 0.64 (good) 0.81 (very good) 0.79 (good) 

velbc 3% 0.47 (fair) 0.94 (very good) 0.50 (fair) 

gcrk 24% 0.62 (good) 0.98 (very good) 0.64 (good) 

advec 33% 0.49 (fair) 0.99 (very good) 0.50 (fair) 

dissip 21% 0.47 (fair) 0.98 (very good) 0.47 (fair) 

Table 7 shows the corresponding metrics for the most time-consuming routines. The 

load balance is good across all routines, indicating an even distribution of 

computational work. However, communication efficiency is lower, which impacts the 

overall parallel efficiency, particularly in the velbc, advec, and dissip functions. 

Considering both the percentage of total execution time taken by these functions and 

their parallel efficiency, future optimization efforts for RES should focus particularly on 

the advec and the dissip functions. 

RES – Summary and next steps 

Concluding, the RES pilot has identified several areas for performance improvement 

based on initial profiling and scalability analyses. First, to better understand the 

application's behaviour under increased parallelism, further profiling will be conducted 

with a higher number of MPI processes. This will help assess how efficiency metrics 

evolve as the process count increases. In addition to this, the analysis will explore 

metrics related to communication efficiency, such as serialization and transfer 

efficiency. Serialization efficiency will reveal which processes experience delays 

waiting for others, while transfer efficiency will provide insights into whether 

overlapping communication with computation could improve overall performance. 
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Second, there is potential to expand co-design exploration. Current domain 

decomposition in RES utilizes a uniform Cartesian grid, distributing equal-sized 

subdomains across CPUs, which does not account for hardware-specific 

characteristics like socket configurations, node boundaries, or the network topology. 

Hence, leveraging this type information for each system could lead to more efficient 

domain distribution and reduced communication overheads. To that end, further 

analysis of the communication patterns is planned to identify the type and frequency 

of data exchange between processes, which may reveal opportunities to reduce the 

volume of data transferred or the number of communication calls. Additionally, RES 

will explore the overlap of communication and computation phases and vectorizing 

computations to improve performance at a lower level. 

3.2 Urban Air Project (UAP) 

The purpose of the UAP pilot is to calculate airflow within cities. The most time and 

resource-demanding parts of this process are the different CFD workflows used during 

simulation. UAP uses three different codes for CFD: OpenFOAM [7] [8], Xyst [9] and 

RedSIM [10]. 

In D3.1 the benchmarks focused on the scalability of OpenFOAM and Xyst.  All UAP 

codes showed high scalability, with OpenFOAM scaling up to 128 nodes in Discoverer 

and Xyst scaling up to 512 nodes in LUMI and MeluXina. Additionally, initial results 

were presented for RedSIM for both CPU and GPU execution, using up to 16 nodes 

for the CPU and 8 nodes for the GPU implementation, with good scalability.  

This deliverable focuses mainly on: i) performance analysis and improvements for all 

UAP codes, and ii) extreme-scaling for OpenFOAM and Xyst.  

3.2.1 Pilot progress and updates 

UAP-FOAM  

Table 8. UAP-FOAM benchmark workflow update  

simulation part execution previous new 

data import serial once once 

mesh conversion serial once once 

decompose serial each #nodes twice 

renumberMesh parallel each #nodes once 

potentialFoam parallel each #nodes once 

simpleFoam [11] parallel each #nodes once 

changeDictionary parallel each #nodes once 
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pimpleFoam [12] parallel each #nodes each #nodes 

To achieve higher scaling, focus was set on LUMI, for which special rules had to be 

followed resulting in updates to the benchmark workflow. Since LUMI does not support 

multiple parallel executions with one submit, the benchmarking process has been 

altered as such: most of the simulation workflow is done once on a single node, and 

only the final, most relevant part is run on multiple nodes. These changes are described 

in detail on Table 8. 

To assess the limits of the UAP-FOAM code, parallel performance was measured by 

inserting new, more detailed timers in the OpenFOAM code to assess the average, 

minimum and maximum time for MPI Reductions, requests and wait operations. Figure 

7 shows that all communication times decrease until about 32-64 nodes, after which 

point they stay relatively stable. Consequently, after that point communication does not 

scale, leading to communication-bound executions. 

 

 

Figure 7. Various UAP-FOAM MPI call times averages and maximums. Call types with negligible 
or zero runtimes are ignored.  

To delve deeper, mesh decomposition properties are shown in Figure 8. While 

communication times do not shorten, the number of cells and neighbouring cells are 

decreasing in number. Consequently, balancing domain decomposition is a valid 

approach for optimization, as currently domain decomposition focuses on distributing 
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cells evenly, contrary to process-to-process boundary cells. The differences in the 

number of neighbouring processes also suggests a possible opportunity for 

optimization.   

 

 

Figure 8. UAP-FOAM mesh decomposition metric averages and maximums.  

 

UAP-RedSIM 

Since RedSIM was at an earlier development phase during D3.1, its parallelization and 

performance optimizations have advanced rapidly, and are therefore explained in 

detail here. RedSIM is an iterative CFD solver, currently using first and second order 

explicit time-stepping methods as an integrator. Every simulation done in RedSIM can 

be broken down into two major phases:  

• An initialization phase, where the polyhedral CFD mesh is partitioned across 

nodes, which includes setting up ghost cells and boundary conditions.  

• A runtime phase, where RedSIM computes the derivative for each cell and does 

a step with the Explicit Euler method with a certain timestep. 

RedSIM supports both CPU and GPU nodes for cluster computation, and is based on 

a hybrid MPI implementation: it assigns an MPI process per CPU socket, and manually 

handles multithreading via Linux APIs. This is especially important for the CUDA GPU 
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version of the code, since with GPUs it is impossible to go down to a thread level 

granularity with MPI. 

While the initialization phase itself is important, the runtime phase is the most critical. 

RedSIM uses the Explicit Euler method with global time stepping to simulate unsteady 

flows. As a result, each iteration requires synchronisation of adjacent mesh cells 

between MPI processes, making mesh partitioning a critical factor for performance, 

since inefficient partitioning can lead to excessive communication between CPU 

nodes. Initial experiments used METIS and PARMETIS for partitioning; however, 

METIS is limited by its single-threaded implementation, and PARMETIS proved too 

slow in hybrid configurations. Based on these limitations, Zoltan’s GRAPH [13] 

partitioning mode was selected as the preferred method for workload distribution. The 

partitioning is performed once during initialisation and remains fixed throughout the 

simulation. Additionally, the MPI_GRAPH communicator topology is used to inform the 

MPI runtime about major data exchange patterns between nodes.  

Another problem due to the use of global time stepping is that each simulation step 

requires collective communication across all MPI processes at the end of an iteration. 

This is an inherent consequence of simulating unsteady flows and cannot be avoided 

within the current method. However, ongoing work explores a heuristic approach to 

estimate the global time step (τ) without requiring full communication between nodes, 

potentially reducing the associated overhead. 

An example of the breakdown of MPI calls in a single iteration (without any exports / 

file writes in the iteration) is given below. This applies to the GPU version of RedSIM 

as well, with a few key differences mentioned later. 

• BEGIN SYNCHRONIZATION OF ADJACENT CELLS BETWEEN PARTITIONS. 

- MPI_Isendrecv called for each adjacent part 

• END SYNCHRONIZATION OF ADJACENT CELLS BETWEEN PARTITIONS. 

- MPI_WaitAll called once. 

• LOCAL TIME-STEPPING TAU MINIMUM REDUCTION 

- MPI_Allreduce with MPI_MIN called once. 

• (OPTIONAL IF COMPUTING RESIDUAL) RESIDUAL COMPUTATION 

- MPI_Allreduce with MPI_SUM called once. 

RedSIM has been designed from the outset to support both GPU and CPU 

architectures and therefore does not require any porting. All CUDA kernels used for 

flux computations have been manually written and fine-tuned, with PTX assembly 

inspected and optimised at the instruction level. Early performance analysis was 

conducted using NVIDIA’s NSight Compute toolkit on Windows, which helped identify 

initial hotspots. In multi-GPU configurations, the main performance challenge was 

heterogeneous communication latency, i.e., that communication between GPUs on the 
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same node is significantly faster than inter-node communication between CPUs. To 

account for this, RedSIM employs the MPI_GRAPH communicator topology in 

combination with OpenMPI’s CUDA-aware MPI support. Future work is moving 

towards manual NVLink-based communication and workload management, in order to 

further improve performance for the GPU implementation. 

UAP-Xyst 

Work on Xyst continued after D3.1 on developing, testing, validating, verifying, 

documenting, and benchmarking solvers specialized to different types of flow 

problems. A high-level overview of the current solvers used in Xyst can be found on 

https://xyst.cc/inciter_main.html. The two latest solvers under verification and 

validation are ChoCG and LohCG, targeting constant-density (incompressible) flow. 

3.2.2 Performance analysis 

UAP-FOAM – System configuration 

All executions of UAP-FOAM were conducted on LUMI. Table 9 details the 

programming and runtime environments used for all the runs. 

 

Table 9. Programming & runtime environment for UAP-FOAM benchmarks  

OpenFOAM LUMI 

Compiler gcc/13.2 

Parallel framework cray-mpich/8.1.29 

Libraries  

Boost 1.83.0 

SCOTCH 7.0.4 

 

UAP-FOAM – Benchmarking configuration 

While UAP-FOAM model development is in the direction of supporting temperature 

and buoyancy, new mesh models are introduced to assess model accuracy, to improve 

adaptation to urban geometry and improve mesh generation automation. The meshes 

are generated using OpenFOAM’s snappyHexMesh utility. Although the same 

geometry of Győr city is used as for previous benchmark models, resolution, cell sizes, 

and cell counts are different. While a very finely detailed class of 49 meshes were 

generated, only four are currently used in the benchmark. In the generation process, 

physical sizes and scales remain unchanged, as do refinement levels. The various cell 

resolutions are acquired by changing the base - coarsest - cell size, thus having 

different cell sizes at all refinement levels. Table 10 shows the new mesh properties. 

https://xyst.cc/inciter_main.html
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Table 10. Details of UAP-FOAM benchmark meshes  

# name type cell count 

1 b20 polyhedra 35.2M 

2 b40 polyhedra 10.6M 

3 b80 polyhedra 2.83M 

4 b160 polyhedra 896k 

 

UAP-FOAM – Results & analysis 

The results depicted in Figure 9 show the speedup progression from 1 to 512 CPU 

nodes (128-65536 cores). Only pimpleFoam, the simulation part, is benchmarked. The 

time between the first and last iteration is measured, skipping initialization which is 

minimal. As expected, the finer grids scale better, since they entail more computation. 

The speedup for the highest mesh size increases in a superlinear fashion up to 128 

nodes, above which point it reaches a plateau. 

  

  

Figure 9. Per node speedup values for pimpleFoam on various number of nodes on LUMI. 
Multiple mesh sizes are shown from coarsest (b160, top left) to finest (b20, bottom right). 
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Figure 10. Per node execution breakdown for pimpleFoam on various number of nodes on 
LUMI. Multiple mesh sizes are shown from coarsest (b160, top left) to finest (b20, bottom right) 

To gain more insight on the execution as a whole, regional timestamping and intrinsic 

profiling using std::chrono::high_resolution_clock was used in the code. As Figure 

10shows, initialization and solving the pressure equation are the most dominant factors 

in runtime. From these two, since only the pressure equation solver scales with 

simulated time (the initialization is run only once), it is reasonable to focus on that to 

improve performance. 

UAP-RedSIM – System configuration 

UAP-RedSIM has been executed on the CPU and GPU partitions of Karolina. Table 

11 provides the details of the programming and runtime environments used for all runs. 

 

Table 11. Programming & runtime environment for UAP-RedSIM benchmarks  

RedSIM Karolina-CPU Karolina-GPU 

Compiler gcc 12.2 cuda 12.3 

Parallel framework openmpi 5.0.5 openmpi 5.0.5 

UAP-RedSIM – Benchmarking configuration 

Benchmarks for RedSIM were performed in the context of Urban Air Pollution for the city of 
Gyor, with 2, 10 and 30 million cell mesh sizes, both for CPU and GPU as described in  

Table 12. All simulations were first order in time and first order in space. The CPU 

RedSIM code was run using ParMETIS, while the GPU with Zoltan GRAPH. 
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Table 12. Details of UAP-RedSIM benchmark meshes  

City Mesh size Iterations 

Gyor 2M 10000 

Gyor 10M 5000 

Gyor 30M 1000 

 

UAP-RedSIM – Results & analysis 

Figure 11 and Figure 12 depict the speedup observed for the CPU and GPU 

implementations of UAP-RedSIM respectively. RedSIM-CPU scales well up to 64 

nodes (8192 cores) for 30M cells, and 32 nodes for smaller mesh sizes. RedSIM-GPU 

also showcases remarkable performance, scaling up to 32 GPUs for the 30M mesh 

size and 16 GPUs for 10M mesh size, demonstrating scalability beyond intra-node, as 

Karolina has 8 GPUs per node. Inconsistent behaviour was registered for 16 GPUs at 

2M mesh size. In comparison with D3.1, the CPU parallel version was reworked from 

scratch. The original version worked in a master-slave model, running one MPI process 

on each of the slave nodes, and OpenMP threads for intra-node parallelization. The 

new implementation benchmarked for this deliverable RedSIM uses a completely 

democratic code for the CPU implementation, using no master node and running two 

processes per node (one per socket) and OpenMP threads for parallelizing within the 

sockets. This fundamentally new approach resulted in completely different scaling 

behaviour. Alas, the code still produces a reasonably good performance up to 64 

nodes. 

In comparison with D3.1, the GPU version also got completely reworked. The original 

version was based solely on CUDA, and while it supports intra-node parallelization 

within its API, maximum number of GPU’s was limited to 8, provided by Karolina’s GPU 

node. The new hybrid MPI-CUDA based implementation supports multi-node 

execution, thus allowing runs up to more than 8 GPUs. All resulted GPU performance 

was excellent within one node. The 10M mesh scales up to 16, and the 30M mesh up 

to 32 nodes almost linearly in this section.    
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Figure 11. Per node speedup for the MPI parallelized CPU version of RedSIM 

 

Figure 12. Speedup for the MPI-CUDA parallelized GPU version of RedSIM 

 

UAP-Xyst – System configuration 

Performance tests for Xyst have been carried out on LUMI using the configuration 

described in Table 13. 

 

Table 13. Programming & runtime environment for UAP-Xyst benchmarks   

Xyst LUMI 

Compiler gcc/12.3 

Parallel framework 
cray-mpich/8.1.29 

Charm++ v7.0.0.rc2 

Libraries  

mpich-ofi 12.3 

netCDF 4.9.0 

 

UAP-Xyst – Benchmarking configuration 
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All UAP-Xyst benchmarks were done with a 133M points, 749M cell count tetrahedral 

mesh. For benchmark model for the RieCG and ZalCG compressible solvers, the 

Taylor-Green vortex problem was used. With the LohCG incompressible solver the lid-

driven cavity flow field was computed. 

UAP-Xyst – Results & analysis 

The benchmarks include running three Xyst solvers above 65K CPU cores for the first 

time, as LUMI "hero" runs. These computed verification problems of academic interest, 

and were meant to stress-test the entire Xyst I/O, startup, time stepping, and 

asynchronous message passing infrastructure up to computational meshes with 

approximately 800-million elements, corresponding to over 100-million nodes (solver 

degrees of freedom, DOF). Strong scaling up to almost 200-thousand CPU cores have 

been established for two of the solvers for the first time. 

 

 

Figure 13. UAP-Xyst per node speedup for the ZalCG solver on LUMI 
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Figure 14. UAP-Xyst per node speedup for the RieCG solver on LUMI. 

 

Figure 15. UAP-Xyst per node speedup for the LohCG solver on LUMI. 

Figure 13, Figure 14 and Figure 15 show scaling results for three different solvers:  

ZalCG, RieCG and LohCG, respectively. For all solvers, a minimum of 4 nodes were 

benchmarked, achieving a speedup of 4x. As it is evident in the figures, Xyst scales 

for all solvers in a superlinear fashion up to 128 nodes and becomes slightly sublinear 

beyond that point. 

In general, it is evident that Xyst can cope with problems of O(10^8) DOF using 

compute resources of O(10^5) CPUs across thousands of networked compute nodes. 

Strong scaling does not yet reach the plateau of diminishing returns for any of the 

solvers tested even at the largest core counts of almost 200K CPUs for RieCG and 

LohCG. Additionally, the largest runs corresponded to about a thousand DOF/core 
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which means runtime could potentially still be decreased using even more resources, 

if available. 

As a result, the absolute performance for the LohCG incompressible-flow solver is 

below 4 milliseconds per time step with a O(10^8) DOF problem without reaching a 

scalability bottleneck. More information about these results can be found at [40]. 

UAP - Summary and next steps 

The latest UAP deliverable shows that all three CFD codes—OpenFOAM (UAP-

FOAM), RedSIM and Xyst—scale well up to hundreds of nodes, with OpenFOAM 

achieving superlinear speedups to 128 nodes on LUMI before plateauing, RedSIM’s 

CPU and GPU versions scaling to 64 CPU nodes and 32 GPUs on Karolina, and Xyst’s 

solvers demonstrating superlinear scaling to almost 200 000 cores on LUMI with no 

bottleneck yet. Detailed MPI timing in UAP-FOAM revealed that communication costs 

level off beyond 32–64 nodes, suggesting that adopting boundary-aware or adaptive 

mesh decompositions could reduce inter-process traffic. RedSIM’s shift to Zoltan 

GRAPH partitioning and an MPI_GRAPH topology has unlocked near-linear scaling, 

and Xyst’s hero runs on a 749 M-cell mesh confirm its ability to handle O(10^8) DOF 

at extreme scale. 

 

3.3 Urban Building (UB) 

The Urban Building (UB) (aka Ktirio Urban Building [14]) pilot’s purpose is to simulate 

the energy behaviour of buildings at scales; ranging from building scale to entire cities 

and beyond. During execution, the simulation estimates each building’s thermal 

comfort, energy consumption and air quality, and the goal is to generate these 

predictions over periods ranging from one month to a full year, reflecting a realistic 

environment. This involves incorporating factors such as weather conditions, 

occupancy patterns, and surrounding vegetation.  

The pilot considers different degrees of accuracy, referred to as the Level of Detail 

(LOD). In the UB context, these representations of buildings are classified as: 

• LOD-0: Buildings are represented as oriented bounding boxes.  

• LOD-1: Buildings are represented as multi-polygonal extrusions, optionally 

including a catalogue of roof shapes. 

• LOD-2: Buildings are detailed from an Industry Foundation Classes [15] (IFC) 

description encompassing many intricate details. 
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Figure 16. UB pilot code pipeline  

 

The UB simulation pipeline can be separated into the following steps as seen on Figure 

16:  

• Input data generation (using Ktirio-GUI): The city energy simulation requires 

the geometric description of a geographic area containing buildings. To do so, 

the Ktirio Graphical User Interface takes in charge the generation of GIS (JSON) 

and mesh files, in LOD-0 and LOD-1 representations. This is done by using 

open databases on the web, such as OpenStreetMap [16], which allow including 

more realistic factors such as the terrain topography and the surrounding 

vegetation. The Ktirio-GUI is built using the QT framework and C++, and 

supports multi-threading. It not only handles physical components, but also 

requests and processes weather information for the selected zones, and creates 

different occupancy scenarios depending on the different building types.  

• Building Model definition: Using the Modelica [17] language, physical systems 

are modelled. The models are then translated to C++ applications using the 

Functional Mock-up interface [18] (FMI).   

• City Energy Simulator: A C++ library designed to simulate a city energy model, 

based on the Feel++ [19] framework. The simulation is parameterized by GIS 

data, different LOD meshes, building models, occupancy scenarios, and 

weather conditions. This application is parallelized on CPU nodes based on a 

distributed approach using MPI. 
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To guarantee and automate the simulation execution on different HPC systems, the 

UB pilot takes advantage of containerization, using Docker [20] and Apptainer [21]. 

This way, the UB programming environment is reusable at any time and is independent 

of the underlying machine, ensuring easy deployment and reproducible results. 

In the previous deliverable (D3.1), a scalability study of Ktirio-UB was performed by 

deploying the pilot’s pipeline using 1-32 nodes (with 128 processes per node), which 

showed that the simulation component of the workflow scaled almost linearly but the 

total execution time did not scale and performance degraded when increasing compute 

nodes. This degradation was caused by a bottleneck concerning the post-processing 

stage of the pipeline. The source of this problem was found to be multiple files being 

written in parallel on the shared file system. Specifically, it was identified that opening 

and closing output files was occupying most of the pipeline’s total execution time and 

did not scale. 

3.3.1 Pilot progress and updates  

UB – Code and pipeline changes 

Multiple features were implemented since D3.1 in the workflow in order to improve the 

accuracy of the city energy simulations. These will be presented at length in deliverable 

D5.7, since they are not optimizations targeting performance or scalability. A brief 

description of these features is the following: 

• The computation of shading masks, which is important for accurately modelling 

the impact of solar radiation on building surfaces.  

• The addition of vegetation objects in the neighbourhood’s or city’s geometry, 

which has a significant impact on the energy consumption of buildings along 

with solar masking.  

• The implementation of a heating control loop for each building supporting boilers 

and heat pumps. Previously, UB supported only ideal heat systems. 

• The addition of a post-processing step that aggregates and exports only the 

simulation outputs of interest for each experiment. This feature is very vital in 

reducing the computational cost of I/O operations for simulations where the 

complete and detailed simulation results dataset is not needed. 

• The introduction of more precise timers in order to measure the performance of 

more fine-grained sections of code. 

 

 

UB – Profiling, bottlenecks and code/algorithm improvements after D3.1 

After D3.1, in order to analyse and optimize the performance of the UB code, profiling 

was conducted. The initial attempt was with Eztrace from NumPEx, the French 
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exascale initiative, which was chosen for its ease of integration. Eztrace uses 

LD_PRELOAD, meaning it requires no recompilation, which was essential given the 

complexity of the UB build pipeline. However, the profiling attempt was unsuccessful 

due to several bugs resulting in traces not being visualized correctly. These issues 

have been reported to the Eztrace development team, and are still under investigation. 

Since UB’s build pipeline complexity is very high, alternative tools like Score-P which 

require re-compilation could not be easily integrated to the existing setup. To address 

this, the UB pilot has introduced a new packaging system known as Spack into their 

workflow which will ultimately enable Score-P profiling support. Although Score-P is 

not yet available for integration at the time of D3.2, its inclusion will provide a more 

robust profiling option for future iterations. 

Even without profiling, the primary bottleneck for the UB pipeline was already identified 

in D3.1; post-processing did not scale due to the high cost of writing HDF5 files across 

a large number of cores. To address this, the workflow was modified to generate 

simulation reports only for relevant information, defined during simulation execution, 

which reduced the actual volume of the output size. reducing communication overhead 

and enabling more targeted performance analysis. Then, the pre-processing stage was 

restructured for distributed partitioning, dividing the input dataset among MPI ranks to 

minimize memory constraints and improve scalability. 

3.3.2 Performance analysis 

UB – System configuration 

As mentioned previously, UB uses containers to ensure that the programming 

environment is reusable and independent of the underlying machine. UB executions 

were performed on 4 different EuroHPC JU systems: Discoverer, Vega, Karolina and 

Meluxina for which the programming and runtime environments are detailed on Table 

14. The UB pilot performance measurements are based on the feelpp.benchmarking 

framework, which eases the benchmarking process of any application on HPC systems 

through the generation of comprehensive reports. 

 

 

 

 

 

 

Table 14. Programming & runtime environment for UB benchmarks  

 Discoverer Vega Karolina Meluxina 
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Compiler (container) Clang 14 

Parallel framework 
OpenMPI 4.1.6 OpenMPI 4.1.5 

OpenMPI 
4.1.4 

OpenMPI 

5.0.3 

Libraries     

Apptainer 
SingularityPRO 

version 3.7-4.el8 

SingularityPRO 
version 4.1.6-

1.el8 
1.3.6 1.3.6 

Python 3.9.7 3.10.8 3.10.4 3.11.10 

 

UB – Benchmarking configurations 

Previously, the scalability of the UB pilot’s workflow was evaluated on Discoverer, 

Karolina and MeluXina, for two different area sizes of a square centred in Strasbourg. 

The datasets contained approximately 6000 and 17000 buildings for square side sizes 

of 2km and 4km respectively. As multiple features were included since deliverable 

D3.1, resulting in major modelling changes, new benchmarking scenarios are 

considered for D3.2 in order to evaluate the new workflow’s strong and weak scaling. 

Table 15 describes the different benchmark scenarios and their parameters. All 

benchmarks are performed using a LOD0 mesh and a 1-day timespan during winter, 

corresponding to January 1st, 2024.  

 

Table 15.  New benchmarking scenarios for UB  

 Location 
Heating 
systems 

Quadrature 
Order 

LOD Period Radius 
# 

nodes 

S1 Paris Ideal  3 0 1 day, winter 1 – 6 km 2 – 50 

S2 Paris-Berlin Ideal  3 0 1 day, winter 5 km 2 – 50 

S3 Paris Ideal  0 – 5 0 1 day, winter 3 km 2 – 10 

More specifically, three different scenarios were used: 

• S1: The first scenario focuses on reviewing the pipeline’s spatial and 

computational scaling. It does so by varying the radius of the circle centred on 

Paris that defines the mesh, from 1km to 6km with a 1km step, as well as the 

number of compute nodes used for the simulation, using 2, 3, 4, 5, 6, 7, 8, 9, 

10, 20, 30, 40 and 50 nodes, with 128 tasks per node. Some large cases 

required more memory than the memory allocated, therefore, the number of 

tasks per node was reduced. 

• S2: The second scenario’s objective is to study the impact of the building density 

of a city in energy simulations, specifically concerning solar shading. For this, a 
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3km radius circle centred on Paris and on Berlin will be considered. The 

computational resources used will vary from 2 nodes to 50, as in the previous 

scenario.  

• S3: The third scenario assesses the impact of the accuracy of the solar mask 

evaluation. The quadrature order parameter controls the number of rays used 

in the ray tracing algorithm: the greater the order of quadrature, the greater the 

number of rays.  The performance of the solar masks and building simulation 

components will be analysed depending on the quadrature order, for the 3km 

mesh of Paris, using 2 - 10 nodes and considering a 1-day period. 

Some relevant statistics for the input meshes for the different radius values are shown 

in  Table 16 and Table 17.  

 

Table 16. Characteristics for the Paris dataset  

Paris Nb buildings Nb vertices (LOD0) Nb triangles (LOD0) 

1km 4 770 185 341 323 140 

2km  17 455 734 992 1 287 744 

3km 36 339 192 5476 3 394 036 

4km  65 390 3 940 001 6 968 494 

5km  102 506 5 856 068 10 337 432 

6km 150 292 7 524 817 13 243 994 

Table 17. Characteristics for the Berlin dataset 

Berlin Nb buildings Nb vertices (LOD0) Nb triangles (LOD0) 

1km 3 842 128 465 223 400 

2km  8 186 471 101 830 828 

3km 17 505 1 103 919 1 949 136 

4km  32 128 1 959 435 3 466 526 

5km  51 007 3 165 351 5 604 338 

6km 77 046 4 382 797 7 735 780 

 

UB – Results & analysis 

In order to accurately compare the application’s performance to D3.1, the solar masks, 

aggregated output report and visualization export components have been deactivated. 

Consequently, the pre-processing stage mainly consists of reading partitioned city 

meshes, and parsing files related to weather conditions and occupancy scenarios. The 

simulation stage only considers the building simulation component, and the post-

processing stage represents only the export of output quantities in parallel using the 

HDF5 format. 
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Figure 17 shows the performance analysis for the S1 scenario for these adjustments, 

using 2-50 nodes and 128 tasks per node, for values of the input city mesh radius 

ranging from 1km to 6km. The figure depicts the performance breakdown for pre-

processing, simulation and post-processing (left) and the speedup achieved (right) on 

each EuroHPC JU machine for the total execution (end-to-end) and the simulation 

component of the pipeline (simulation). 
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Figure 17. UB-Ktirio performance results for the Paris scenario, with only the D3.1 modelling 
components active for 1 - 50 nodes 

First, it is notable that in general the speedup improves with the problem’s size, e.g. 

the city radius. For all city radius values the simulation part of the workflow takes the 

most time on low numbers of nodes. However, as node count increases, the execution 

time of the simulation starts being dominated by the pre-processing and post-

processing steps.  

In contrast to D3.1, the simulation stage has a slightly lower speedup, which is 

attributed to more advanced building models being used, while the partitioning 

procedure does not yet account for this added complexity. More specifically, while 

buildings are assumed to have the same weight in the load balancing, the current urban 

building model has been improved with various characteristics and differences 

depending on the building type, like the number of floors. 

On the other hand, the end-to-end pipeline now shows some scaling with the 

computation resources, while in D3.1 it actually resulted in slowdowns. The most 

important factor for this is that computation time needed for exporting HDF5 outputs 

has significantly been reduced, leading to an important improvement in the total 

pipeline execution. 

Next, to assess the performance of the updated code, all newly implemented features 

of UB were enabled, allowing the analysis of the solar masks component, as well as 

the aggregation report and visualization export.  

Figure 18 presents the performance achieved for the S1 scenario, i.e., when using 

increasing mesh sizes. It is evident that enabling the new features leads to a significant 
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impact on the performance. Improved scalability is traded off in favour of incorporating 

more realistic components and thus obtaining more accurate results. 

It can be seen that there exists a case (3km, 10 nodes) where the pre-processing stage 

takes longer than usual for Discoverer, which can only be explained by stability issues 

with Discoverer’s file system. Additionally, some benchmarks on Vega were 

unsuccessful, either because of very long queue times or due to connection issues 

concerning SLURM. In general, executions on Karolina exhibited better performance 

and scaling compared to the other systems. 
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Figure 18. UB-Ktirio performance results for the Paris scenario, with all modelling components 
active for 1 - 50 nodes 

The benchmarking has provided a detailed insight into the efficiency and scalability of 

UB’s components. More specifically, both areas of success and others requiring further 

optimization have been identified: 

• Solar Mask Evaluation: The evaluation of the solar mask shows significant 

scaling issues. When a large number of MPI tasks is employed, the 

computational time increases dramatically. This performance degradation was 

anticipated given that the current implementation, while robust, is not fully 

optimized for MPI parallelism. To address this, work has begun on incorporating 

spatial partitioning, which will localize solar mask intersections within 

designated processor groups. This approach is expected to reduce 

communication overhead and improve scalability. 

• Building Simulation: The building simulation component exhibits near-perfect 

scaling. Task distribution across nodes is well-balanced, and the simulation 
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performs efficiently under parallel execution. This confirms that the underlying 

model and its MPI task management are functioning as intended. 

• Post-Processing Steps:  

- Export Outputs (HDF5): The export of simulation outputs in HDF5 format 

consumes minimal time, indicating that this process does not significantly 

impact the overall execution.  

- Report Generation: Report generation maintains good scaling behaviour 

even as computational resources increase.  

- Export Visualization (Ensight): In contrast, the export of large visualization 

files in Ensight format shows a marked increase in execution time with the 

number of nodes used. This suggests that parallel access to shared file 

systems is a bottleneck. Alternative strategies, such as caching intermediate 

results or leveraging local disk storage, are being considered to alleviate this 

issue. 

  

 
 

Figure 19. UB-Ktirio performance results for the Paris and Berlin-Paris scenarios, with all 
modelling components active for 1 - 50 nodes 

Figure 19 depicts the results for the S2 scenario, i.e., for two considerably large 

European cities (Paris and Berlin) that have significantly different densities concerning 

building distribution. Even if the relative time taken by the simulation varies between 

cities (caused by the difference in the number of buildings), the speedup is almost 

identical between Paris and Berlin. This leads to the conclusion that the density of a 

city has no major influence on the application’s scaling. 
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Neither case achieves linear scaling for the simulation stage, implying that UB 

pipeline’s scaling might be independent of the input dataset. On the other hand, due 

to the higher number of buildings present in the Paris dataset, post-processing takes 

significantly more time than Berlin with respect to the other phases of the workflow. 

Finally, by leveraging pre-computed mesh partitions, the pre-processing stage seems 

to be also independent of the input dataset. The time percentage required to load input 

remains almost constant. 

Finally, the third scenario (S3) assesses the impact of quadrature order on 

performance, taking into account the maximum computation time of all iterations, the 

total computation time and the relative performance of the solar masks component. All 

experiments  were performed on the Discoverer and Karolina clusters, for 2-10 nodes, 

on the 3km - Paris mesh, for the quadrature order taking values from 0 to 5.  

Figure 20 shows the maximum computation time over all iteration and the total 

execution time that the solar masks component took, running on 8 nodes of the 

Discoverer cluster. It can be deduced from the figure that the number of quadrature 

points has a significant impact on the computation time. Considering a quadrature 

order of 3 instead of 4 reduces the solar mask computation time by half. A more in-

depth analysis should be done on the accuracy of solar shading coefficients to examine 

if a high order is necessary. 

Finally, Figure 21 depicts the relative performance and speedup of the simulation 

component (solar masks and building energy simulation) for the given quadrature 

orders and for 2 to 10 nodes, on the 3km - Paris dataset. It is evident that the simulation 

component scales better for lower quadrature orders, notably when executing on a 

larger number of nodes. In order to profit from the accuracy of a higher number of 

quadrature points, mesh partitioning should be revisited to improve the scaling of the 

solar masks component, along with optimizing MPI communications. 

 

Figure 20. The number of quadrature points and their effect on execution time for the solar 
mask component 
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Figure 21. Relative performance and speedup of UB simulation by quadrature order 

UB - Summary and next steps 

Concluding, the UB pilot has redesigned its codebase, adding new more complex 

model components, and extended benchmarking across multiple EuroHPC JU 

systems. End-to-end scalability has improved considerably for the model workflow 

components used in D3.1, largely due to reduced output export time in the post-

processing stage. On the other hand, the simulation speedup was slightly lower than 

in previous results, which was attributed to increased model complexity that is not yet 

fully accounted for in the load balancing strategy. Regarding new model components 

introduced after D3.1, the solar mask evaluation and visualization export stages 

emerged as new bottlenecks while the pre-processing performance was largely stable 

and independent of the input dataset size. 

Moving forward, optimisation will focus on improving the MPI parallelism of the solar 

mask component, using spatial partitioning to reduce communication overhead. The 

Ensight-based visualization export will also be reviewed, with strategies such as 

caching intermediate data or using local storage to reduce I/O contention. Further 

analysis will evaluate the trade-offs between quadrature order and solar shading 

coefficient accuracy, aiming to achieve a balance between performance and model 

fidelity. These improvements will be integrated in the next development phase to 

support more scalable and robust large-scale UB simulations. 

3.4 Wildfires (WF) 

The Wildfires (WF) pilot focuses on simulating fire propagation and its interaction with 

the atmosphere across different spatial scales. Within the pilot, two primary use cases 

are considered, based on the resolution and the characteristics of the simulated 

scenarios: the landscape level and the settlement (urbanization) level. 

• Landscape level: The objective at this level is to simulate wildfire progression 

and its coupled interactions with atmospheric dynamics. This includes modelling 

the release of energy, wind field disturbances, pyro-convective phenomena, and 

the emission and dispersion of smoke. The modelling approach combines the 

Weather Research and Forecasting model [22] (WRF) with SFIRE [23], a semi-
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empirical fire behaviour module tailored for coupled atmosphere–fire 

simulations. Benchmarking efforts reported in D3.1 were focused exclusively on 

this level, where a variety of different WRF pipelines were implemented and 

benchmarked on the VEGA EuroHPC system to identify the initial bottlenecks 

of the WRF-SFIRE code.  

• Settlement level: At the finer urbanization scale, the pilot’s purpose is to simulate 

flame-scale fire dynamics over built environments and complex terrains. This 

includes local atmospheric interactions, obstruction effects from buildings and 

vegetation, and the modelling of smoke and spark dispersion. The simulations 

leverage high-fidelity CFD solvers such as OpenFOAM and domain-specific fire 

modules. The OpenFOAM code for this level is currently under development 

and integration, so benchmarking is expected to be performed in the next part 

of the project. 

3.4.1 Pilot progress and updates  

For Deliverable D3.1, the WF pilot performed initial benchmarking activities focusing 

on landscape-scale wildfire simulations using the WRF-SFIRE model. These efforts 

provided early validation of the pilot’s functionality on EuroHPC JU systems and 

highlighted several limitations. Firstly, the deployment process of WRF and WPS was 

hindered by system-specific software dependencies, making it difficult to port the 

pipeline across different HPC systems. Next, benchmarking was constrained to a set 

of baseline scenarios with limited scalability, focusing mainly on pipeline correctness 

and viability, not scalability. Consequently, the overall pipeline exhibited suboptimal 

scalability due to its complexity, decomposition limitations caused by the problem 

resolution, and I/O-heavy pre-processing/data loading phases. Consequently, in this 

deliverable the focus for the WF pilot was a) portability and b) evaluating, profiling and 

improving scalability in more complex WRF execution pipelines.  

 

Table 18. Details of the Cadalso simulation case 

Location Domains 
Horiz. 
Res. 

Comp. Grid  
Start  
point 

Duration 

Cadalso 4 

5.4 km 640 x 642 

28/06/2019 
14:00 UTC 

4 hours 
1.08 km 716 x 676 

216 m 826 x 786 

72 m 892 x 889 

 

Portability improvements 

As part of the project’s co-design efforts, the WF pilot is collaborating with the 

EPICURE project [24] to ease and standardise the installation and deployment of the 
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WRF-SFIRE modelling framework across multiple EuroHPC JU systems. The goal of 

this collaboration is to overcome the reproducibility and portability challenges 

highlighted in D3.1 by developing EasyBuild recipes and installation procedures for 

each HPC system. To this end, EPICURE has allocated dedicated personnel for each 

target platform, responsible for developing and validating installation workflows, which 

are subsequently tested by MTG in production environments. 

As of now, the progress is as follows:  

• LUMI: An EasyBuild recipe for WRF-SFIRE and WPS has been created and 

tested successfully. 

• Discoverer: An installation procedure for WRF-SFIRE has been created and 

successfully tested. WPS installation is still pending.  

• Vega: An EasyBuild recipe is currently under development and being tested. 

• Meluxina: An EasyBuild recipe is currently under development 

• Karolina: An EasyBuild recipe is currently under development. 

• Mare-Nostrum: An EasyBuild recipe is currently under development and testing 

has begun. 

 

New codes and pipeline changes 

To explore scalability in a new ‘larger’ scenario with higher available parallel work, the 

WF pilot has expanded its technical scope to include higher-resolution simulations at 

the landscape level. To that end, a new WRF-SFIRE simulation was configured for the 

wildfire event that began on 28/06/2019 at 14:00 UTC near Cadalso de los Vidrios in 

Comunidad de Madrid. This case introduced a 72-meter horizontal resolution in the 

innermost domain, representing one of the highest-resolution wildfire simulations 

conducted within the WF pilot to date. Its configuration details are presented in Table 

18. The simulation ran for a total of 4 hours, initialized at ignition time. Initial and 

boundary conditions were sourced from the ERA5 [25] reanalysis dataset at a 

resolution of 0.25°, while the digital elevation model and fuel model map were 

generated using LIDAR-derived raster layers provided by the National Geographic 

Institute.  

The forest fuel classification followed the Anderson (1982) scheme, consistent with 

BEHAVE[26] modelling standards, and was processed to a 25-meter spatial resolution. 

Due to differences in grid structures between domains, the ndown.exe [27] utility was 

required for domain coupling between d02 and d03. The outer domains were executed 

on 32 nodes (128 cores per node), while the finer domains initially used ~40 nodes 

with identical core configurations to accommodate computational load and memory 

demands. 
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3.4.2 Performance analysis 

D3.1 assessed the scalability of the WRF-based workflow (WF) for two scenarios and 

across different node configurations in VEGA in an attempt to identify its key 

performance limitations. The larger scenario (‘2k_test’, henceforth referred to as 

‘200m-Robledo’) employed there revealed that while speedup improved up to 10 

nodes, it degraded beyond that point due to pre-processing and intermediate data 

handling becoming increasingly dominant as computational time decreases.  

In this deliverable a different approach is used. First of all, simulation is redefined to 

denote only the final WRF stage instead of all the WRF stages and the Real stage as 

in D3.1. Second, all pipeline stages are analysed in the breakdowns plots, to identify 

specific bottlenecks for each one of them. The node counts displayed in all such plots 

refer to the final WRF stage, while preceding stages may use fewer nodes.  

 

Table 19. Programming & runtime environment for WF-WRF benchmarks  

 LUMI Karolina Leonardo 

Compiler GCC-13.2.0 GCC-13.2.0 GCC-12.2.0 

Parallel framework MPICH v8.1.29 Open MPI v4.1.6 

Libraries    

zlib 1.3.1 1.2.13 1.3 

cuRL - 8.3.0 8.4.0 

HDF5 1.12.2 1.14 1.14 

libpng 1.6.40 1.2.50 1.2.50 

jasper 4.0.0 1.900.1 1.900.1 

NetCDF-C netcdf-hdf5parallel v4.9.0.11 4.9.2 4.9.2 

NetCDF-FORTRAN netcdf-hdf5parallel v4.9.0.11 4.6.0 4.6.0 

WRF-SFIRE 4.4 4.4 4.4 

WPS 4.4 4.4 4.4 

 

WF – System configuration 

Three EuroHPC JU systems have been used for WF’s scalability analysis in addition 

to Vega used in D3.1: LUMI, Karolina, and Leonardo.  The programming and runtime 

environments for WRF and WPS installation on each system are detailed in Table 19. 

 

WF – Results & Analysis 

First, we compare the performance of WF reported in D3.1 on Vega (AMD-based 

system) with the performance achieved for Leonardo (Intel-based system) for the same 

200m-Robledo scenario. Besides comparing different CPU vendors, we also employ 

Leonardo as our new baseline for scalability for two reasons: i) It is a more recent 
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system, and ii) it allowed the deployment of the pilot without the technical issues that 

we experienced before on Vega. Figure 22 depicts the scalability achieved on 

Leonardo and LUMI. It is evident, that while Leonardo exhibits improved scalability 

compared to VEGA, speedup still diminishes beyond 16 nodes.  

Figure 23 presents the detailed execution breakdown per stage for the 200m-Robledo 

pipeline on Leonardo, allowing the identification of two possible causes for this 

behaviour: i) The last WRF stage does not scale after ~16 nodes, and ii) the remaining 

pipeline stages do not scale at all and therefore quickly become a bottleneck. 

 

 

Figure 22. WF per node speedup on VEGA and LUMI for the 200m-Robledo scenario 
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Figure 23. WF execution time breakdown per stage for 200m-Robledo in Leonardo 

 

 

Figure 24. WF's Metgrid stage tracing for the 200m-Robledo scenario 

The former is problem-specific, as the maximum scalability depends on the WRF 

domain decomposition, and for this pipeline does not enable the utilisation of more 

computing resources (nodes). The latter however constitutes a critical problem, as 

even for a more scalable WRF domain/problem, the rest of the stages will limit the 

performance as defined by Amdal’s law. Hence, in order to address this issue and 

detect potential solutions, the pipeline components were profiled and traced with 

Score-P and visualized with Vampir [28], leading to the following observations: 

As indicated in  

• Figure 23, the Metgrid stage has a significant impact on the total execution 

time, accounting for nearly 20% of the end-to-end execution duration when 

WRF runs on 32 nodes. We note that this stage executes on a single node with 

25 processes, exhibiting extremely low parallel efficiency (0.06). Figure 24 

groups Metgrid processes by their communication/computation patterns, 

revealing that Metgrid is heavily communication-bound, with MPI_Send (mostly) 

and MPI_Broadcast comprising over 90% of total time. We can also observe 
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that some messages have very high latency. With further analysis, we attribute 

this to the exchange of many very small messages during execution. 

Consequently, this problem is caused by the Metgrid algorithm, which was not 

designed to be highly parallel and, therefore, scalable. 

 

 

Figure 25. WF's Real stage tracing for the 200m-Robledo scenario 

• The Real stage executes on 1 node with 112 processes and takes around 5% 

of the end-to-end execution time when WRF runs on 32 nodes. As shown in 

Figure 25, it suffers from imbalance, with process 0 performing some 

computation and all the other processes being dominated by MPI 

communication. MPI_Scatterv and MPI_Broadcast account for over 90% of 

execution time, resulting in an extremely low parallel efficiency (0.01). As a 

result, scalability is inherently constrained, and increasing process/node count 

does not improve performance. 
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Figure 26. WRF_d01_d02_d03 stage tracing for the 200m-Robledo scenario 

• The WRF_d01_d02 stage runs on 8 nodes (896 processes) and takes around 

10% of the end-to-end execution time when WRF runs on 32 nodes. This stage 

is similar to the last WRF stage but operates on a smaller grid. It involves both 

computation and collective communication and has an estimated parallel 

efficiency of 0.33. Figure 26 outlines the process timeline and shows low 

computational imbalance, with 50% of execution time spent on MPI_Bcast 

collective communication between computation phases and 15% blocked by 

MPI_Wait and other dependencies. 

 

 

Figure 27. WF's Ndown stage tracing for the 200m-Robledo scenario 

• The Ndown stage executes on 8 nodes and takes less than 5% of the end-to-

end execution time when WRF runs on 32 nodes. As depicted in Figure 27,  
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25% of Ndown’s time is spent on collective communication (MPI_Bcast), 5% on 

computation, and 70% in MPI management (MPI_Init), with processes spending 

10–75% of their total time in MPI initialization and minimal computation, leading 

to Ndown exhibiting extremely low parallel efficiency (0.01). 

• The final WRF stage accounts for 60–80% of total execution time while utilizing 

~90% of total resources. It follows the same communication/computation 

pattern with the previous WRF stage but uses a larger decomposition grid, 

improving parallel work and therefore, scalability. It starts with a parallel 

efficiency of 0.78 at 8 nodes, which declines sharply as node count increases, 

dropping to ~0.3 at 32 nodes. 

Summarizing, the WRF stages consume most of the execution time and resources. 

While they scale much better than the other stages, communication remains a limiting 

factor and scalability depends on the domain decomposition which defines the parallel 

work and the communication-to-computation ratio. But, even with perfect WRF scaling, 

the maximum achievable end-to-end speedup for 200m-Robledo would be ~40×, 

constrained by the rest stages that do not scale, with Metgrid being the main 

bottleneck.  

Based on the profiling and analysis of the WRF 200m-Robledo pipeline, MTG is 

exploring hybrid implementation of WRF-SFIRE using MPI and OpenMP (previously 

only with MPI). This process is ongoing, with a hybrid version successfully compiled 

and validated with small-scale configurations on the Vega system, but with runtime 

errors appearing in larger simulations (when exceeding 900 grid points). This issue 

has been reported to the Vega support team and EPICURE and is currently under 

investigation. At the same time, EPICURE is also testing hybrid implementations on 

LUMI which will also utilize custom vectorisation optimizations (originally developed for 

Discoverer). Once hybrid MPI+OpenMP WRF passes the testing phrase, EPICURE 

has advised fine-tuning task placement, OpenMP usage across different subprograms, 

and usage of compilation flags. For example, initial results showed that Metgrid 

performed better when configured to use two OpenMP threads and half of the MPI 

tasks instead of the default numbers. 

 

Table 20. Details of new WF Cadalso scenarios  

 
D01 
(km) 

D02 
(km) 

D03 
(km) 

D04 
(m) 

Number of points per domain 

e_we e_sn 

200m_ 
Cadalso 

9 3 1 200 
D01=345 D02=688 
D03=676 D04=846 

D01=249 D02=490 
D03=484 D04=786 

72m_ 
Cadalso 

5.4 1.08 0.216 72 
D01=640 D02=716 
D03=826 D04=892 

D01=642 D02=676 
D03=786 D04=889 
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In addition to the actual scalability bottlenecks of the WF code explored above, the 

previously benchmarked pipelines were also constrained by low maximum available 

parallelism due to not being designed for HPC execution (prior to this project). To that 

end, we consider two more fitting WRF scenarios/pipelines for further scalability 

analysis, using a new “Cadalso” dataset and with the domain characteristics described 

in Table 20. These new tests are similar to Robledo-200m, but after the first four pre-

processing stages which remain the same, they decompose domains differently and 

use different resolutions. More specifically: 

• For the 200m_Cadalso: 

- WRF is run for D01, D02 and D03. 

- Ndown is used to remap the output of D03 to input D04. 

- WRF is run for D04. 

• For the 72m_Cadalso: 

- WRF is run for D01 and D02. 

- Ndown is used to remap the output of D02 to input D03. 

- WRF is run for D03 and D04. 

The 200m_Cadalso test was evaluated across all three new systems: LUMI (using 4 –

64 nodes), Karolina (using 1–128 nodes), and Leonardo (using 1–128 nodes). On the 

other hand, the 72m_Cadalso test was ran only on the Karolina (using 2 – 64 nodes) 

due to the limited resources of the EuroHPC JU benchmarking access scheme. 

 

 

Figure 28. WF per-node speedup for the 200m_Cadalso scenario 
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Figure 29. WF per-node speedup for the 72m_Cadalso scenario 

Figure 27 and  Figure 29 present the achieved speedup for both the end-to-end 

execution and the final WRF simulation stage. Both tests demonstrate superior 

scalability to 200m_Robledo, due to the larger amount of computation in the last WRF 

part. The simulation of the 200m_Cadalso scenario scales well up to 8 nodes (~6x 

speedup) for all three systems and then shows a minor performance gain until 64 

nodes, albeit at a much lower scaling rate (~11x speedup). However, overall scalability 

remains limited for end-to-end execution due to the increasing overhead of the other 

stages, achieving a maximum end-to-end speedup of 8.95x on LUMI (lower on the 

other systems). On the other hand, the 72m_Cadalso scenario exhibits higher 

scalability achieving almost double speedup for in 64 nodes (~23x) compared to 

200m_Cadalso due to the further increased parallel work because of the higher 

resolution. Finally, its end-to-end speedup follows a similar trend (~16x for 64 nodes) 

but still becomes visibly constrained by the other stages after ~8 nodes. 
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Figure 30. WF's execution time breakdown per stage for the 200m_Cadalso scenario 

 

Figure 31. WF's execution time breakdown per stage for the 72m_Cadalso scenario 

 

These observations are confirmed by the execution time breakdown depicted in Figure 

30 and  

Figure 31 for the 200m_Cadalso and 72m_Cadalso scenario respectively. As shown 

in Figure 30, Metgrid and the first WRF stage (D01, D02, D03 computation) constitute 

the primary bottlenecks similarly to the previously discussed 200m_Robledo scenario. 

More specifically, the simulation dominates for ≤16 nodes (occupies >50% of total 

execution time), but beyond 16 nodes the speedup flattens and pre-processing and 

simulation contribute equally (~50%) to the total time. 
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In contrast, the 72m_Cadalso scenario exhibits a different execution profile. As shown 

in Figure 29, the final WRF stage still dominates total execution time even for higher 

node counts, starting from 95% of total execution time for 1 node and ending up to 

~70% for 64 nodes. Additionally, the first WRF stage, comprising in this case only of 

two domains (the third has been shifted in the final WRF invocation), now contributes 

significantly less to total time. On the other hand, Metgrid still emerges as a bottleneck 

at high node counts. 

WF - Summary and next steps 

Concluding, the WF pilot undertook during the reporting period following D3.1 a series 

of corrective actions aimed at improving portability and scalability. In respect to 

portability, with support from the EPICURE co-design task, the pilot’s build system and 

execution environment were refactored to ease deployment on new EuroHPC 

systems, reducing hard dependencies and improving modularity. In respect to 

scalability, the benchmarking suite was extended with more diverse and demanding 

scenarios that better exercise the scalability of the pipeline and stress the system’s 

computational resources. In order to address the previously observed scalability 

bottlenecks, in-depth profiling was performed using Score-P and analysed with Vampir 

[28]. This analysis provided detailed insights into performance breakdowns across the 

pipeline’s stages, highlighting opportunities for parallelism improvements, I/O 

restructuring, and load balancing. 

The next step for the WF pilot is integrating and evaluating potential WRF scalability 

improvements. To that end, WF will evaluate a hybrid MPI+OpenMP WRF-SFIRE 

implementation, which is currently under development and early tests on Vega have 

shown promising results on small-scale configurations. Additionally, hybrid builds with 

vectorisation optimisations for WRF-SFIRE will be tested on LUMI. Once code 

correctness is confirmed, the focus will shift to tuning OpenMP settings, task 

placement, and compilation options to further improve scalability and performance. 

Finally, the WF will focus on the benchmarking, evaluation and optimization of the new 

OpenFOAM code currently under development. 

 

3.5 Material Transport in Water (MTW) 

The Material Transport in Water (MTW) pilot use-case is designed to simulate the 

complex interactions between fluid dynamics, particulate matter and temperature 

changes. As rising water temperatures threaten aquatic ecosystems, especially rivers 

and oceans, accurate computational models and extreme-scale simulations are critical 

to studying climate change and predicting its consequences for aquatic life. 
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To tackle this challenge, MTW leverages the waLBerla [29] [30], a high-performance 

multiphysics framework based on the Lattice Boltzmann Method (LBM). LBM allows 

for scalable simulations that efficiently handle coupled fluid-thermal dynamics, 

essential for studying material transport in water systems. 

3.5.1 Pilot code description  

FAU officially joined the HiDALGO2 project in M18 (June 2024), i.e., after the 

submission of Deliverable D3.1. This late integration required a rapid adaptation of the 

existing waLBerla workflows to fully utilize the capabilities of EuroHPC systems 

efficiently while maintaining the flexibility needed to model complex environmental 

scenarios. Consequently, in this deliverable the MTW pilot focuses on: i) adjusting to 

HIDALGO2 methodology, ii) porting existing code to EuroHPC machines, and iii) 

establishing an optimization baseline for the project. 

MTW – Adjusting to the HIDALGO2 workflow 

The benchmarking workflow for the MTW pilot at FAU follows a well-known Research 

Data Management (RDM) framework to ensure efficiency and reproducibility in 

performance evaluation. It relies on three primary repositories: benchmark-scripts for 

execution scripts, benchmark-data for performance data storage, and post-processing 

for data analysis and visualization (details about FAU’s RDM can be found in D2.5). 

Additionally, to integrate with the HiDALGO2 benchmarking framework a project-

specific repository hid-bench-mtw has been introduced to the workflow. 

The current process consists of cloning the benchmark-scripts repository, where 

dedicated build scripts for each cluster and application are responsible for software 

retrieval and compilation. Then, batch run scripts execute benchmarks using internal 

waLBerla timers to collect performance metrics, which are then uploaded to 

benchmark-data. Post-processing scripts convert this structured performance data into 

CSV format for hid-bench-mtw, ensuring it aligns with HiDALGO2 methodology 

requirements. Current transformations can be done effectively without relying on 

ReFRAME [31]. Integrating ReFRAME into the MTW pilot has proven to be more 

complex than the current MTW workflow requires. As a result, its integration has been 

deprioritised in order to maintain consistency and efficiency with established 

benchmarking practices. However, considering ReFRAME's automated environment 

matching capabilities, a ReFRAME integration into future workflows will be considered, 

especially if advanced benchmarking pipelines with increased modularity are required. 

MTW – Code optimizations prior to HiDALGO2 entry 

The parallelization of the MTW pilot is based on waLBerla, an HPC framework 

designed for scalability and portability [32] [33]. The key component driving these 

optimizations is lbmpy [34] [35] [36], a code-generation framework that combines the 
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high-level mathematical description of LBM models and efficient, low-level 

implementations suited for diverse hardware architectures. 

Specific optimizations include: 

• Common Sub-expression Elimination (CSE) in order to reduce redundant 

computations. 

• SIMD Vectorization for CPU-based parallelization (SSE, AVX, AVX512). 

• Memory packing and efficient in-place streaming patterns to ensure optimal 

use of memory bandwidth (not applied to the MTW pilot yet). 

• Hardware-specific code generation that allows automatic adaptation to CPUs 

and GPUs. 

• Communication overlap/hiding by splitting the problem domain into an inner 

and outer layer for every process. This allows the parallel update of the local 

inner cells while communication of the outer ones is performed, reducing the 

idling time spent while waiting for the massage-based communication to finish 

(not applied to the MTW pilot yet). 

 

In this deliverable, the MTW pilot focuses on two main benchmark test cases: 

• Fluid Benchmark – Lid-Driven Cavity Flow (henceforth “UniformGrid”): This 

benchmark focuses on the well-known lid-driven cavity test case, where shear-

driven flow is induced within a closed square cavity. The simulation is 

implemented using LBM, specifically evaluating the performance of D3Q19 and 

D3Q27 models with the Single Relaxation Time (SRT) collision scheme. Each 

timestep involves fluid updates, boundary condition enforcement, and inter-

processor communication through MPI-based ghost layer exchanges, enabling 

scalable parallel performance assessment. The exact benchmarking setup can 

be found in Table 22. 

• Two-Way Coupled Fluid-Temperature Benchmark – Differentially Heated 

Cavity (henceforth “MTW-case”): This test case simulates thermally induced 

convection within a fluid domain using a coupled lattice Boltzmann approach. It 

combines two LBM models, each applied at every simulation timestep with two-

way interaction: a D3Q19 model with a single relaxation time (SRT) scheme for 

fluid dynamics, and a D3Q7 model with a multiple relaxation time (MRT) scheme 

for temperature evolution. The simulation involves fluid and temperature field 

updates via LBM, appropriate boundary handling to preserve coupling 

consistency, and ghost layer communication of particle distribution functions 

(PDFs) for both fields. This ensures efficient data exchange across distributed 

memory systems, supporting scalable parallel execution. From a pure 

computational point of view, the MTW case is the successive execution of two 

LB kernels with different boundary conditions and memory array sizes. 
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Therefore, the performance optimizations presented for the pure fluid kernel 

should in theory be directly applicable to the MTW showcase. However, as the 

mutual coupling of these two properties introduces additional complexity, this 

remains an optimistic assumption for now and thorough benchmarking and 

validation is required. The exact benchmarking setup can be found in Table 22 

and Table 23. 

3.5.2 Co-Design Activities 

Due to the recent addition of FAU to HIDALGO2, efforts in profiling and optimizing the 

pilot for a specific target EuroHPC system have not started yet. Consequently, co-

design activities performed by FAU for the moment are executed on the abstraction 

layer of code-generation. The key co-design activities explored in the context of the 

HIDALGO2 project are: 

• Optimizing memory access patterns for high-bandwidth memory (HBM) 

configurations. 

• Efficient inter-node communication using waLBerla’s MPI-based 

implementation, ensuring scalable distributed simulations. 

• GPU offloading with lbmpy- and pystencils [37]-generated computational 

kernels, which are specifically optimized for different GPU architectures. The 

generated kernels efficiently execute on: 

- NVIDIA GPUs via CUDA-generated kernels 

- AMD GPUs via HIP-generated kernels 

• Testing the performance characteristics of waLBerla for various architectures 

on a local FAU test cluster. This led to integrating waLBerla with lbmpy-

generated LBM kernels against different hardware platforms for continuous 

optimization [38].  

3.5.3 Performance analysis 

This section provides a performance evaluation of the MTW showcase through an 

investigation of the pure fluid benchmark “UniformGrid” with all of waLBerla's 

optimization strategies available as detailed previously and the fluid-concentration-

coupled benchmark “MTW case”. The analysis is based on strong scaling and focuses 

on: i) computational speedup for both benchmark applications, and ii) the distribution 

of execution time among the various simulation components of the "MTW case", in line 

with the HIDALGO2 benchmarking and reporting methodology established in D3.1. 

While the waLBerla framework is able to extensively optimize the LBM simulations 

present in “UniformGrid”, the LBM model of the transport equation as well as the fluid-

temperature-coupling which are utilized by the “MTW case” remain in an exploratory 
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phase, where fewer optimizations have been implemented to ensure a comprehensive 

assessment of workload distribution and correctness. 

 

MTW – System configuration 

MTW executions were performed during the reporting period on two EuroHPC 

systems, LUMI and MareNostrum5, on both the CPU and GPU partitions. The details 

of the programming and runtime environments used for these runs can be found in 

Table 21. The compilers were chosen based on their reputation to achieve optimal 

performance on target architecture. All reported benchmarks use the most recent 

library versions available on the systems. 

 

MTW – Benchmarking configuration 

The UniformGrid benchmark was executed on two GPU based and two CPU based 

systems with a Lattice model consisting of 19 and 27 PDEs per cell respectively. These 

systems represent the different benchmark scenarios that can be found in Table 22. 

The in-place AA streaming pattern with collision of single relaxation time are 

exemplarily chosen. Each benchmark was set up to fit the problem in the respective 

CPU or GPU memory of a single node resulting in given distributions of "Lattice Cells 

per Process". Due to the benchmark’s simplicity, the performed number of time-steps 

was kept minimal with a pure simulation time of approximately 3 seconds on one node. 

The reduced run time during strong scaling was compensated by repeating the 

simulation proportionally to the number of utilized nodes and averaging over the 

simulation time per run. 

 

 

 

Table 21. Programming & runtime environment for MTW benchmarks  

 LUMI-C LUMI-G MN5-GPP MN5-ACC 

Compiler Cray-clang-
17.0.1 

AMD-clang-
17.0.0 

Intel-
2021.10.0 

NVHPC-
23.11.0 

Parallel framework cray-mpich-
8.1.29 

cray-mpich-
8.1.29 

Openmpi-
4.1.5 

Openmpi-
4.1.5 

Libraries     

waLBerla 6.1 6.1 6.1 6.1 

lbmpy 1.3.7 1.3.7 1.3.7 1.3.7 

Python3 3.11.7 3.11.7 3.12.1 3.12.1 

CUDA - - - 12.2 

HIP - 6.0.3 - - 

Jinja2 3.1.6 3.1.6 3.1.6 3.1.6 

Pybind11 2.13.6 2.13.6 2.13.6 2.13.6 
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Table 22. Benchmarking configuration for the MTW-UnformGrid benchmarks  

Scenario Lattice Model 
Communication 

Hiding 
Lattice Cells 
per Process 

Time-steps 

MN5-GPP D3Q27-AA-SRT 
simple overlap with 

(8, 8, 8)-split 
224x224x112 5 

LUMI-C D3Q27-AA-SRT 
simple overlap with 

(8, 8, 8)-split 
192x192x160 5 

MN5-ACC D3Q19-AA-SRT 
simple overlap with 

(8, 8, 8)-split 
640x640x640 20 

LUMI-G D3Q19-AA-SRT 
simple overlap with 

(8, 8, 8)-split 
640x640x640 20 

The UniformGrid benchmark utilizes all performance optimizations that are currently 

available within waLBerla and lbmpy. This includes architecture-specific optimizations 

produced by lbmpy, i.e. vectorization, loop transformations and memory packing, in-

place streaming pattern, etc, and communication-hiding techniques of the waLBerla 

MPI module to overlap computation and communication by splitting the process local 

domain as specified in the respective column of Table 22. These optimizations enable 

the benchmark to maintain a high level of efficiency across multiple nodes.   

The configuration data for MTW-case can be found in Table 23. Both the fluid and the 

temperature model use a pull streaming pattern instead of a more complex in-place 

one. Both cases are expected to have reached a steady state after the number of time 

steps specified.  

 

 

 

 

Table 23. Benchmarking configuration for the MTW-case benchmarks  

Scenario 
Lattice Model 

fluid 
Lattice Model 
temperature 

Lattice Cells per 
Process 

Time-
steps 

full_mem D3Q19-pull-SRT D3Q7-pull-MRT 256x512x128 1000 

small_mem D3Q19-pull-SRT D3Q7-pull-MRT 128x256x64 1000 

 

MTW – Results & analysis 

Initially, strong scaling benchmarks for UniformGrid were carried out on two GPU-

based systems: MareNostrum5-ACC and LUMI-G. First, GPU-focused benchmarking 

was conducted on MareNostrum5-ACC, reaching up to 32 nodes (i.e. 128 H100 

NVIDIA GPUs) to assess strong scaling for the most recent NVIDIA Hopper 

architecture. Then, strong scaling experiments extended up to 512 nodes (2048 

MI250x AMD GPUs) in LUMI-G to provide performance insights at extreme scale. 
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Figure 32 shows the strong scaling performance for UniformGrid with walBerla and 

lbmpy on the two GPU clusters LUMI-G (blue) and MareNostrum-ACC (green). The 

UniformGrid benchmark shows almost linear scaling up to 32 nodes. As the number of 

nodes increases, the scaling behaviour becomes logarithmic, which is still an adequate 

behaviour for strong scaling, especially on GPUs. 

 

Figure 32. MTW per node speedup for strong scaling investigations of the fully optimized pure 
fluid LBM benchmark (UniformGrid) on LUMI-G (AMD) and MareNostrum5-ACC (NVIDIA) 

 

In addition to GPU benchmarks, strong scaling analysis for UniformGrid was also 

carried out on two CPU-based systems: MareNostrum5-GPP and LUMI-C. On 

MareNostrum5-GPP, tests were performed using up to 64 nodes (~7k Intel Sapphire 

Rapid Cores), while on LUMI-C scaling was evaluated up to 512 nodes (~65k AMD 

EPYC Cores). Additionally, an attempt was made for running on Deucalion, but 

benchmarking was delayed due to MPI compatibility issues and challenges in 

achieving reliable cross-platform compilation. 

As Figure 33 shows, UniformGrid exhibits near-optimal scalability across the full range 

of available nodes both for LUMI-C and MareNostrum-GPP, with two noticeable 

anomalies. First, there is a transient drop in scalability observed at 32 nodes on 

MareNostrum-GPP. Second, starting at 128 nodes on LUMI-C, the speedup increases 

over-proportionally with the number of nodes. We attribute both observations to the 

caching effects inherent to each CPU architecture. Furthermore, because CPUs act as 

general-purpose computing units, they can deliver robust performance even when 

dealing with smaller problem sizes. This behaviour contrasts with that of GPUs, which 

are designed for high-throughput computation. As a result, CPUs can manage lower 
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computational loads and communication of smaller data packets more effectively 

compared to GPUs. This helps to reduce the impact of latency, which often affects 

scalability when deploying large computing resources. 

 

Figure 33. MTW per node speedup for strong scaling investigations of the fully optimized pure 
fluid LBM benchmark (UniformGrid) on LUMI-C (AMD) and MareNostrum5-GPP (Intel) 

The MTW-case benchmarking focused primarily on LUMI-G, where strong scaling 

experiments were conducted using up to 128 nodes (each equipped with four AMD 

MI250x GPU modules). Two distinct problems (set up as detailed in Table 23) were 

evaluated: a full memory configuration (light blue), in which the problem was sized to 

fully occupy the GPU memories of a single node, and a small memory configuration 

(dark blue), where the problem size was reduced by a factor of two in each spatial 

dimension, resulting in a memory footprint approximately equal to one-eighth of the 

total GPU memory per node. The MTW-case was also deployed on Vega, but 

prolonged allocation times and resource contention prevented successful execution 

within the reporting period. 

Figure 34 illustrates the logarithmic speed-up behaviour of the full memory 

configuration. The code displays some scalability up to 16 nodes, but after that point 

scalability collapses entirely. The small memory configuration follows a comparable 

trend but with scalability diminishing faster, which is expected considering that its initial 

problem size corresponds to one-eighth of the full memory setup. The poor scalability 

behaviour of this showcase can be traced back to exponentially decreasing utilization 

of the GPUs. When the number of nodes doubles, each node processes half as much 

data, resulting in many small communications between the GPUs, making the 

simulation latency-bound and under-utilizing the high GPU memory bandwidth. The 
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same applies to the computational power of the target architecture - the exponentially 

decreasing number of lattice cells per node has a direct impact on the number of 

threads available per compute unit, limiting the occupancy of the GPUs. 

 

Figure 34. MTW per node speedup for strong scaling investigations of the MTW fluid-
temperature-coupling’s benchmark (MTW-case) on LUMI-G 

To gain further insights into the bottlenecks of MTW-case, its execution is split into five 

steps: 

• Pre-Processing that includes MPI initialization and memory allocation. 

• Fluid Communication that includes inter- and intra-node MPI communication. 

• Fluid Update that includes the stream-collide-step for approximating the fluids 

dynamic properties by solving the Boltzmann Equation, and the boundary 

handling.  

• Concentration Communication that includes inter- and intra-node MPI 

communication. 

• Concentration Update that includes the stream-collide-step to solve the 

transport equation for temperature as a scalar field using the LBM, and the 

boundary handling. 

Figure 35 illustrates the percentile breakdown of the MTW-case execution to these 

stages, from bottom to top. The dominant influence of bandwidth and latency is 

evident; the higher the number of nodes, the lower the influence of the computation of 

the lattice cell updates to the point where the simulation just waits for the 

communication to finish. As LBM is a memory-bound algorithm, the computation times 

are directly proportional to the complexity of the LBM model, which can be seen well 

in the single node bar in Figure 35, where the fluid kernels with the Q19 model take 
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about 2.5 times as long as the temperature kernels with the Q7 model.  On the other 

hand, the runtime impact of pre-processing tends to be constant within strong scaling. 

 

 
Figure 35. MTW-case benchmark’s execution time breakdown on LUMI-G 

MTW – Summary and next steps 

Summing up the performance observations for the MTW pilot, while the Lattice 

Boltzmann Method demonstrates a significant degree of scalability, problem sizes per 

node must be sufficiently large to fully exploit node capabilities - especially on GPU 

clusters. In the subsequent deliverable D3.3, this should be further explored via weak 

scaling benchmarks and profiling. Furthermore, this analysis will be expanded to 

multiple EuroHPC systems, with the objective of validating performance and ensuring 

compatibility and efficiency across the entire EuroHPC hardware stack under 

production-level workloads. Finally, the exploration of task-level parallelism, such as 

ensemble simulations [39], could be regarded as a viable alternative to exclusive data-

parallel methodologies.  
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4 Scalability & Optimisation related KPIs 

HiDALGO2 has identified multiple KPIs related to benchmarking and optimisation 

activities and is committed to achieve ambitious targets. Table 24 presents the current 

status of these KPIs based on the benchmarking activities that have been reported in 

Section 3, along with the status reported on the previous deliverable (D3.1). It is evident 

that during the reporting period, good progress has been achieved. 

 

Table 24. Status of benchmarking and optimisation related KPIs in M12 (D3.1) and M28 

 

During the reporting period (M13-M28), HiDALGO2 has continued the benchmarking 

of its pilots on the HPC infrastructure, employing also the more recently added 

EuroHPC JU systems that were unavailable for D3.1. More specifically:  

• The RES pilot extended its damages benchmarking activities to the Proxima 

and Leonardo systems, with scalability tests performed using up to 8k cores, 

doubling the core count reported in D3.1. A new scenario focusing on the 

prediction of photovoltaic energy production was introduced and benchmarked 

on Leonardo for up to 8k cores. Profiling of the damages workflow confirmed 

that communication remains the main bottleneck and future work will explore 

communication optimisations, such as communication-computation overlap. 

• Benchmarking activities for the UAP pilot covered both UAP-FOAM and UAP-

Xyst components on LUMI, with UAP-FOAM extending tests up to 512 nodes 

(64k cores). Scalability remained strong up to 128 nodes, with communication 

overhead becoming more significant at larger scales. For UAP-Xyst, three 

continuous Galerkin Finite Element solvers were evaluated, with successful 

hero runs on LUMI reaching 196k cores for LohCG and RieCG. In addition, 

UAP-RedSIM was tested on Karolina, scaling up to 64 CPU nodes (8k cores) 

and up to 32 NVIDIA A100 GPUs. 

KPI Target M12  M28 Comments 

Applications with a 
scalability of 50k cores in a 
single run 

≥ 3 1 3 

Scalable runs with more than 50k 
cores have already been 
achieved by UAP-Xyst, UAP-
FOAM and MTW-walBerla. 

Applications with a 
scalability of 200k cores in 
a single run 

≥ 1 0 1 
UAP-Xyst scales up to 196k 
processes in LUMI-C  

Applications with a 
scalability of 80k cores in 
ensemble runs 

≥ 3 0 0 
No work has been performed yet 
for ensemble runs. 

Applications with parallel 
efficiency improved by 30% 

≥ 3 0 3 
The parallel efficiency of WF-
WRF code, UAP-Xyst and UAP-
RedSIM has been improved  
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• The UB pilot underwent a major model redesign and was benchmarked on 

Discoverer, Karolina, MeluXina and VEGA, reaching up to 50 nodes (~6k 

cores).  While scalability improved, issues with pre-processing and post-

processing phases still persist at high node counts. Upcoming work will focus 

on file I/O optimisations to address these bottlenecks in the next deliverable. 

• The WF pilot was benchmarked for D3.1on VEGA, with allocations of up to 16 

nodes. Since then, extensive profiling and performance analysis has been 

carried out, revealing several bottlenecks in the pipeline, which are now under 

active improvement. The WRF-based pipeline has been extended to utilise 128 

nodes (16k cores), with some scaling up to 64 nodes (8k cores). A new 

simulation scenario using OpenFOAM has also been tested and validated, and 

is expected to be benchmarked in the next phase. 

• The MTW pilot joined the project after D3.1 and has adapted to the 

benchmarking methodology used across pilots, with ReFRAME integration 

underway. Benchmarks were carried out for both the standalone LBM kernel 

and the full MTW pipeline, on CPU and GPU architectures. The GPU-based 

LBM benchmark scaled effectively up to 2048 AMD MI250x GPUs on LUMI-G 

and 128 NVIDIA H100 GPUs on MN5-ACC. CPU-based benchmarks showed 

nearly linear scaling, reaching 512 nodes (64k cores) on LUMI-C. The full MTW 

workflow was tested on LUMI-G up to 128 nodes; however, scalability was 

limited and needs to be further analysed and improved. 

In the forthcoming periods of the project, the benchmarking of the pilots will continue 

as they advance and are further optimised. The main next steps can be summarised 

as follows: 

• More profiling and bottleneck analysis: This second deliverable has already 

identified a few performance issues for pilot code, especially when scaling in 

larger amounts of nodes, using profiling and tracing along with usual 

benchmarking. 

• Automating deployment: Due to differences between EuroHPC systems in 

terms of software dependencies, portability is one of the major issues still faced 

by pilots. More general solutions like containerization will be explored in the rest 

of the project. 

• Extreme scalability: Future benchmarking activities will focus on scaling pilots 

to larger node counts and extreme-scale configurations, building on the 

progress achieved so far. As node counts increase, communication and I/O 

bottlenecks are expected to become more critical, and addressing these issues 

will be a key priority in the next phase of the project.  
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5 Conclusions 

This deliverable reports the outcomes of the benchmarking and optimization activities 

performed between M13 and M28. During the reporting period, the HPC infrastructure 

used by the project was extended to include newly added EuroHPC systems. The 

process of acquiring resources still remains cumbersome, and in addition the amount 

of awarded resources through the access schemes typically utilized by the pilots has 

been significantly reduced. 

Despite the challenges faced with regard to resources, significant progress has been 

achieved in terms of performance optimisation, leading to achieving the targets set for 

3 out of the 4 KPIs related to benchmarking and optimisation. More notably, one of the 

HiDALGO2 codes (UAP-Xyst) has already achieved scalability of up to almost 200k 

cores, running on the LUMI-C partition. On the other hand, more performance 

bottlenecks have been identified and all pilots are continuously working on improving 

their scalability. For the last part of the project, the pilots will focus on more profiling 

and bottleneck analysis to address communication and I/O challenges, improving 

deployment and portability via containerization, and scaling applications to extreme 

node counts. 
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