

D3.2 Scalability, Optimization and Co-Design Activities

Date: April 30, 2025

 D3.2 – Scalability, Optimization and Co-Design Activities

Disclaimer for Deliverables with dissemination level PUBLIC

This document is issued within the frame and for the purpose of the HiDALGO2 project. Funded by the European Union. This work has received funding from

the European High Performance Computing Joint Undertaking (JU) and Poland, Germany, Spain, Hungary, France, Greece under grant agreement number:

101093457. This publication expresses the opinions of the authors and not necessarily those of the EuroHPC JU and Associated Countries which are not

responsible for any use of the information contained in this publication. This deliverable is subject to final acceptance by the European Commission.

This document and its content are the property of the HiDALGO2 Consortium. The content of all or parts of this document can be used and distributed

provided that the HiDALGO2 project and the document are properly referenced.

Each HiDALGO2 Partner may use this document in conformity with the HiDALGO2 Consortium Grant Agreement provisions.

(*) Dissemination level: PU: Public, fully open, e.g. web; CO: Confidential, restricted under conditions set out in Model Grant Agreement; CI: Classified, Int =

Internal Working Document, information as referred to in Commission Decision 2001/844/EC

Keywords:

High Performance Computing (HPC), benchmarking, scalability, optimization, application

bottlenecks, performance analysis

Document Identification

Status Final Due Date 30/04/2025

Version 1.0 Submission Date 30/04/2025

Related WP WP3 Document Reference D3.2

Related

Deliverable(s)

D3.1, D3.4, D3.5 Dissemination Level (*) PU

Lead Participant ICCS Lead Author Konstantinos Nikas,

Petros Anastasiadis

(ICCS)

Contributors MTG, PSNC, SZE,

UNISTRA, FAU

Reviewers Zoltán Horváth (SZE)

Philippe Pinçon

(UNISTRA)

 D3.2 – Scalability, Optimization and Co-Design Activities

Document name: D3.2 – Scalability, Optimization and Co-Design Activities Page: 3 of 75

Reference: D3.2 Dissemination: PU Version: 1.0 Status: Final

Document Information

List of Contributors

Name Partner

Petros Anastasiadis ICCS

Kostis Nikas ICCS

Michal Kulczewski PSNC

Wojciech Szeliga PSNC

Leydi Laura MTG

Luis Torres MTG

Angela Rivera MTG

David Caballero MTG

Javier Cladellas UNISTRA

Vincent Chabannes UNISTRA

Christophe Prud'homme UNISTRA

László Környei SZE

Michael Zikeli FAU

Document History

Version Date Change editors Changes

0.1 25/02/2025 ICCS Initial version of the document - ToC

0.2 07/03/2025

Marcin Lawenda

(PSNC), Rahil

Doshi (FAU)

ToC, timeline and responsibilities approved

0.3 24/03/2025 ICCS, MTG ICCS - MTG contributions for WF pilot

0.4 12/04/2025 ICCS Combined ICCS & MTG WF contributions

0.5 12/04/2025 ICCS Integrated FAU-MTW contributions

0.6 13/04/2025 PSNC, ICCS Integrated PSNC-RES contributions

0.7 13/04/2025 UNISTRA, SZE,

ICCS

Integrated UNISTRA-UB and SZE-UAP

contributions

0.8 16/04/2025 ICCS Draft for internal review

0.9 24/04/2025 ICCS Integrated Internal review comments

0.95 29/04/2025 Rahil Doshi Quality assurance check

 D3.2 – Scalability, Optimization and Co-Design Activities

Document name: D3.2 – Scalability, Optimization and Co-Design Activities Page: 4 of 75

Reference: D3.2 Dissemination: PU Version: 1.0 Status: Final

1.0 30/04/2025 Marcin Lawenda Final check and improvements

Quality Control

Role Who (Partner short name) Approval

Date

Deliverable leader Petros Anastasiadis (ICCS) 29/04/2025

Quality manager Rahil Doshi (FAU) 29/04/2025

Project Coordinator Marcin Lawenda (PSNC) 30/04/2025

 D3.2 – Scalability, Optimization and Co-Design Activities

Document name: D3.2 – Scalability, Optimization and Co-Design Activities Page: 5 of 75

Reference: D3.2 Dissemination: PU Version: 1.0 Status: Final

Table of Contents

Document Information .. 3

Table of Contents ... 5

List of Tables .. 6

List of Figures ... 7

List of Acronyms ... 8

Executive Summary ...10

1 Introduction ..11

1.1 Purpose of the document ..11

1.2 Relation to other project work ...11

1.3 Structure of the document ...11

2 Access to EuroHPC JU supercomputers ...12

2.1 Challenges and limitations using EuroHPC JU systems12

2.1.1 Limited amount of resources ..12

2.1.2 System maintenance and large queue times ..13

2.1.3 System portability issues ..13

2.2 Awarded EuroHPC JU resources (M13-M28) ...13

3 HiDALGO2 pilots’ benchmarking ...16

3.1 Renewable Energy Sources (RES) ...16

3.1.1 Pilot progress and updates ...17

3.1.2 Co-design activities ..17

3.1.3 Performance analysis ...18

3.2 Urban Air Project (UAP) ..25

3.2.1 Pilot progress and updates ...25

3.2.2 Performance analysis ...29

3.3 Urban Building (UB) ..36

3.3.1 Pilot progress and updates ...38

3.3.2 Performance analysis ...39

3.4 Wildfires (WF) ...48

3.4.1 Pilot progress and updates ...49

 D3.2 – Scalability, Optimization and Co-Design Activities

Document name: D3.2 – Scalability, Optimization and Co-Design Activities Page: 6 of 75

Reference: D3.2 Dissemination: PU Version: 1.0 Status: Final

3.4.2 Performance analysis ...51

3.5 Material Transport in Water (MTW) ...60

3.5.1 Pilot code description ...61

3.5.2 Co-Design Activities ...63

3.5.3 Performance analysis ...63

4 Scalability & Optimisation related KPIs ..70

5 Conclusions ...72

References ..73

List of Tables

Table 1. Current EuroHPC JU systems coverage matrix. Green cells indicate that access has been

awarded, grey cells denote a system that a partner is not planning to request access to, as it is either

similar to another partition or not suitable for the pilot, and red cells indicate that an application was

made but the system was unavailable due to lack of resources. RES, UAP, UB, WF and MTW

columns show the systems requested by each pilot, while the HiDALGO2 column shows the systems

requested by ICCS for the HiDALGO2 benchmarking activities in general. ... 14
Table 2. Hardware configuration of CPU partitions used during the reporting period (M13-M28) 15
Table 3. Hardware configuration of GPU partitions used during the reporting period (M13-M28) 15
Table 4. Current benchmarking coverage of the HiDALGO2 project .. 16
Table 5. Programming & runtime environment for RES benchmarks ... 18
Table 6. Details of RES-EULAG benchmarking scenarios ... 18
Table 7. RES profiling breakdown of efficiency metrics per function .. 24
Table 8. UAP-FOAM benchmark workflow update ... 25
Table 9. Programming & runtime environment for UAP-FOAM benchmarks 29
Table 10. Details of UAP-FOAM benchmark meshes ... 30
Table 11. Programming & runtime environment for UAP-RedSIM benchmarks 31
Table 12. Details of UAP-RedSIM benchmark meshes .. 32
Table 13. Programming & runtime environment for UAP-Xyst benchmarks ... 33
Table 14. Programming & runtime environment for UB benchmarks.. 39
Table 15. New benchmarking scenarios for UB ... 40
Table 16. Characteristics for the Paris dataset ... 41
Table 17. Characteristics for the Berlin dataset .. 41
Table 18. Details of the Cadalso simulation case ... 49
Table 19. Programming & runtime environment for WF-WRF benchmarks ... 51
Table 20. Details of new WF Cadalso scenarios .. 56
Table 21. Programming & runtime environment for MTW benchmarks .. 64
Table 22. Benchmarking configuration for the MTW-UnformGrid benchmarks 65
Table 23. Benchmarking configuration for the MTW-case benchmarks ... 65
Table 24. Status of benchmarking and optimisation related KPIs in M12 (D3.1) and M28 70

 D3.2 – Scalability, Optimization and Co-Design Activities

Document name: D3.2 – Scalability, Optimization and Co-Design Activities Page: 7 of 75

Reference: D3.2 Dissemination: PU Version: 1.0 Status: Final

List of Figures

Figure 1. RES-EULAG per node speedup for the R5 scenario ... 19
Figure 2. RES-EULAG per node speedup for the R10 scenario ... 20
Figure 3. RES-EULAG per node speedup for the CBPIO-RV-R1 fine mesh .. 20
Figure 4. RES-EULAG execution times for the R10-dist scenario when using 25%, 50% and 100% of

available CPUS per node .. 22
Figure 5. RES timing breakdown - profiling summary ... 23
Figure 6. RES Cube basic profiling ... 23
Figure 7. Various UAP-FOAM MPI call times averages and maximums. Call types with negligible or

zero runtimes are ignored.. 26
Figure 8. UAP-FOAM mesh decomposition metric averages and maximums. 27
Figure 9. Per node speedup values for pimpleFoam on various number of nodes on LUMI. Multiple

mesh sizes are shown from coarsest (b160, top left) to finest (b20, bottom right). 30
Figure 10. Per node execution breakdown for pimpleFoam on various number of nodes on LUMI.

Multiple mesh sizes are shown from coarsest (b160, top left) to finest (b20, bottom right) 31
Figure 11. Per node speedup for the MPI parallelized CPU version of RedSIM 33
Figure 12. Speedup for the MPI-CUDA parallelized GPU version of RedSIM 33
Figure 13. UAP-Xyst per node speedup for the ZalCG solver on LUMI ... 34
Figure 14. UAP-Xyst per node speedup for the RieCG solver on LUMI. .. 35
Figure 15. UAP-Xyst per node speedup for the LohCG solver on LUMI. ... 35
Figure 16. UB pilot code pipeline .. 37
Figure 17. UB-Ktirio performance results for the Paris scenario, with only the D3.1 modelling

components active for 1 - 50 nodes .. 43
Figure 18. UB-Ktirio performance results for the Paris scenario, with all modelling components active

for 1 - 50 nodes ... 45
Figure 19. UB-Ktirio performance results for the Paris and Berlin-Paris scenarios, with all modelling

components active for 1 - 50 nodes .. 46
Figure 20. The number of quadrature points and their effect on execution time for the solar mask

component ... 47
Figure 21. Relative performance and speedup of UB simulation by quadrature order 48
Figure 22. WF per node speedup on VEGA and LUMI for the 200m-Robledo scenario 52
Figure 23. WF execution time breakdown per stage for 200m-Robledo in Leonardo 53
Figure 24. WF's Metgrid stage tracing for the 200m-Robledo scenario .. 53
Figure 25. WF's Real stage tracing for the 200m-Robledo scenario .. 54
Figure 26. WRF_d01_d02_d03 stage tracing for the 200m-Robledo scenario 55
Figure 27. WF's Ndown stage tracing for the 200m-Robledo scenario ... 55
Figure 28. WF per-node speedup for the 200m_Cadalso scenario .. 57
Figure 29. WF per-node speedup for the 72m_Cadalso scenario .. 58
Figure 30. WF's execution time breakdown per stage for the 200m_Cadalso scenario 59
Figure 31. WF's execution time breakdown per stage for the 72m_Cadalso scenario 59
Figure 32. MTW per node speedup for strong scaling investigations of the fully optimized pure fluid

LBM benchmark (UniformGrid) on LUMI-G (AMD) and MareNostrum5-ACC (NVIDIA) 66
Figure 33. MTW per node speedup for strong scaling investigations of the fully optimized pure fluid

LBM benchmark (UniformGrid) on LUMI-C (AMD) and MareNostrum5-GPP (Intel) 67
Figure 34. MTW per node speedup for strong scaling investigations of the MTW fluid-temperature-

coupling’s benchmark (MTW-case) on LUMI-G .. 68
Figure 35. MTW-case benchmark’s execution time breakdown on LUMI-G ... 69

 D3.2 – Scalability, Optimization and Co-Design Activities

Document name: D3.2 – Scalability, Optimization and Co-Design Activities Page: 8 of 75

Reference: D3.2 Dissemination: PU Version: 1.0 Status: Final

List of Acronyms

Abbreviation /
acronym

Description

EC European Commission

CFD Computational Fluid Dynamics

CoE Centre of Excellence

CPU Central Processing Unit

Dx.y Deliverable number y belonging to WP x

DXQY X represents the model’s dimensions; Y represents the number of PDFs

with which the lattice cell is discretized

EESSI European Environment for Scientific Software Installations

EULAG Eulerian/semi-Lagrangian fluid solver

FPGA Field-programmable gate array

GFS Global Forecasting System

GIS Geographic Information System

GPU Graphics Processing Unit

GRIB GRIdded Binary or General Regularly-distributed Information in Binary

form

HPC High Performance Computing

I/O Input/Output

KPI Key Performance Indicator

LB Lattice Boltzmann

LBM Lattice Boltzmann Method

LOD Level of Detail

MPI Message Passing Interface

MRT Multiple Relaxation Time

MTW Material Transport in Water

PDF Particle Distribution Functions

RDM Research Data Management

RES Renewable Energy Sources

 D3.2 – Scalability, Optimization and Co-Design Activities

Document name: D3.2 – Scalability, Optimization and Co-Design Activities Page: 9 of 75

Reference: D3.2 Dissemination: PU Version: 1.0 Status: Final

SIF Singularity Image Format

SRT Single Relaxation Time

UAP Urban Air Project

UB Urban Building

WF Wildfires

WP Work Package

WPS WRF Pre-processing System

WRF Weather Research and Forecasting Model

 D3.2 – Scalability, Optimization and Co-Design Activities

Document name: D3.2 – Scalability, Optimization and Co-Design Activities Page: 10 of 75

Reference: D3.2 Dissemination: PU Version: 1.0 Status: Final

Executive Summary

This deliverable presents the current status of scalability, performance optimization,

and co-design activities across all HiDALGO2 [1] pilot applications on EuroHPC JU

systems. It builds upon D3.1 [2] and focuses on improvements made during the second

part of the project (M13-M28). Its main objective is to evaluate how the pilots behave

on different HPC architectures, identify performance bottlenecks, and prepare the

applications for extreme-scale benchmarking going into the third part of the project.

Compared to D3.1, this deliverable analyses a new pilot (MTW) that has been added

to HiDALGO2, extends benchmarks to new systems, introduces larger and more

complex scenarios, and explores cross-platform portability through co-design and

profiling activities. In addition, profiling tools such as Score-P [3] and Cube [4] have

been applied to gain deeper insights into code-level performance and highlight

dominant communication or I/O bottlenecks. These insights are now guiding code

restructuring and optimization efforts, including potential improvements in MPI load

balancing, communication overlap, and memory usage.

In conclusion, D3.2 confirms that most pilots have reached a mature benchmarking

phase, scaling well to thousands of cores. However, further work is still required to

improve communication efficiency, I/O handling, and portability across heterogeneous

systems. These aspects will be the focus of follow-up activities in regards to

benchmarking and optimization.

 D3.2 – Scalability, Optimization and Co-Design Activities

Document name: D3.2 – Scalability, Optimization and Co-Design Activities Page: 11 of 75

Reference: D3.2 Dissemination: PU Version: 1.0 Status: Final

1 Introduction

1.1 Purpose of the document

This deliverable documents the benchmarking, optimization, and co-design activities

for HiDALGO2 pilot applications during the second part of the project (M13–M28). It

reports the scalability and performance improvement of each pilot on EuroHPC JU

systems compared to D3.1, identifies new bottlenecks, and evaluates deployment

portability approaches. The results are used to guide future developments

optimizations and benchmarking affords for the HIDALGO2 partners.

1.2 Relation to other project work

Deliverable D3.2 compares the performance and scalability of HiDALGO2 pilots in the

16 month period following D3.1, as these are described in deliverables D5.3 “Research

Advancements for the Pilots (M10)” and D5.4 “Research Advancements for the Pilots

(M23)”, on the project’s HPC infrastructure, as defined in deliverable D2.4

“Infrastructure Provisioning, Workflow Orchestration and Component Integration”.

Deliverable D3.2 drives future activities within WP3 (Exascale Support for Global

Challenges) and WP5 (Tackling Global Challenges). It is the second of a series of

reports focusing on scalability, optimisation and co-design activities (D3.1 in M12, D3.2

in M28, and D3.3 in M47).

1.3 Structure of the document

This document is structured in 5 major chapters.

• Chapter 2 presents the current EuroHPC deployment status for the project’s

pilots, as well as challenges of acquiring resources and using EuroHPC JU

systems.

• Chapter 3 discusses the benchmarking and optimization progress of each

HiDALGO2 pilot, and presents the updated scalability results.

• Chapter 4 presents the status of HiDALGO2 KPIs related to benchmarking and

optimisation activities and summarizes all findings.

• Chapter 5 summarizes and concludes this deliverable.

 D3.2 – Scalability, Optimization and Co-Design Activities

Document name: D3.2 – Scalability, Optimization and Co-Design Activities Page: 12 of 75

Reference: D3.2 Dissemination: PU Version: 1.0 Status: Final

2 Access to EuroHPC JU supercomputers

HiDALGO2 works towards the deployment, benchmarking and optimization of the

HiDALGO2 pilots on all EuroHPC JU [5] systems. For this purpose, HiDALGO2

requires simplified access to the appropriate amount of resources on all EuroHPC JU

supercomputers.

2.1 Challenges and limitations using EuroHPC JU systems

2.1.1 Limited amount of resources

Since no special access scheme has been provided for European projects, the current

standard procedure is still similar to the one described in D3.1, i.e., each HIDALGO2

partner is required to submit separate proposals for resources to the EuroHPC JU.

Until now, almost all pilots still leverage the development access scheme, as the

regular and extreme access schemes are awarded to already mature codes in terms

of scalability.

Unfortunately, in 2024 the amount of resources awarded through the development

access calls were significantly reduced, creating a significant challenge for HiDALGO2.

More specifically, while in the first year of the project HiDALGO2 pilots were allocated

10000-15000 node hours per CPU partition, now they receive only 3000-4000 node

hours; similarly, the allocations of the GPU partitions are awarded between 40% and

80% of the resources that were allocated in the first year of the project. The limited

resources create a significant challenge, as all HiDALGO2 pilots are expected to be

under continuous development and improvement during the lifetime of the project.

Hence, even though our current efforts demand significantly more computational

resources for testing, validation and profiling than the first year, they have been actually

performed with a more constrained budget.

Additionally, during the reporting period, several hardware issues (especially in newly

added systems), such as nodes crashing during execution or network issues between

the nodes, caused draining of the awarded resources. Consequently, pilot executions

for larger domains and fine-grained resolution requiring many CPU cores easily

consumed the resources allocated via development calls, leading to continuously

reapplying for additional resources. For example, the execution of the WF pilot for a

single benchmark scenario drained all the resources of a single development call on

the Leonardo DCGP partition; the same was true for the profiling of WF using Score-

P on Karolina.

Finally, some of the systems (Karolina GPU, MeluXina CPU) experienced

oversubscription of their resources for some period of time (around 6 months), leading

 D3.2 – Scalability, Optimization and Co-Design Activities

Document name: D3.2 – Scalability, Optimization and Co-Design Activities Page: 13 of 75

Reference: D3.2 Dissemination: PU Version: 1.0 Status: Final

to them being entirely unavailable and not awarding resources to applicants during this

time.

2.1.2 System maintenance and large queue times

Another challenge faced during the reporting period was that many systems

experienced significant downtimes due to scheduled maintenance or unexpected

emergencies. All systems regularly experienced downtimes lasting several days and

even longer in some cases; LUMI was down for almost the entire month of August

2024, and MeluXina for several weeks in September 2024. Additionally, queuing times

vary greatly across systems, complicating the process of designing benchmark runs

and scheduling them on the systems. For example, the waiting time for larger runs

(requesting thousands of CPU cores) typically amounts to a few days for LUMI and

VEGA.

2.1.3 System portability issues

A recurring challenge across pilots is the portability of workflows between different

HPC systems, primarily due to variations in environment management and job

submission practices. While most solver components are portable at the code level,

the workflow runners and build environments often face system-specific restrictions.

For instance, some pilots are affected by platform constraints such as filesystem limits

(e.g., maximum number of files) or restricted external network access required to install

dependencies. These issues can prevent consistent and automated setup across

systems.

In addition, MPI job submission mechanisms differ between platforms. Some systems

require the use of mpirun or mpiexec for efficient parallel execution, while others

mandate the use of srun or platform-specific launchers. These inconsistencies

complicate workflow portability and reduce reproducibility. As a potential solution,

containerised application environments are being explored to decouple software

environments from system-specific configurations. While containers offer a promising

direction for reducing setup complexity and improving cross-system compatibility, most

pilots did not start with containerized applications and this adds extra migration

overhead.

2.2 Awarded EuroHPC JU resources (M13-M28)

Table 1 provides the EuroHPC JU systems coverage at the end of the second part of

the HiDALGO2 project. Access to systems has been requested in such a way that

HiDALGO2 does not focus on a subset of supercomputers and works on as many

systems as possible, taking into account the implementations of the pilots. Specifically:

 D3.2 – Scalability, Optimization and Co-Design Activities

Document name: D3.2 – Scalability, Optimization and Co-Design Activities Page: 14 of 75

Reference: D3.2 Dissemination: PU Version: 1.0 Status: Final

Table 1. Current EuroHPC JU systems coverage matrix. Green cells indicate that access has
been awarded, grey cells denote a system that a partner is not planning to request access to, as
it is either similar to another partition or not suitable for the pilot, and red cells indicate that an
application was made but the system was unavailable due to lack of resources. RES, UAP, UB,
WF and MTW columns show the systems requested by each pilot, while the HiDALGO2 column
shows the systems requested by ICCS for the HiDALGO2 benchmarking activities in general.

• No pilot has an FPGA-based implementation.

• RES, UB and WF are currently implemented only for execution on CPUs.

• UAP uses three different codes. Two of those are implemented solely for

execution on multiple CPUs, while the third has also a multi-GPU

implementation, targeting NVIDIA GPUs.

• MTW supports NVIDIA and AMD GPU architectures and AMD, Intel and ARM

CPUs.

Based on the above, no resources have been requested in the FPGA partition of

MeluXina. Also, Deucalion became available relatively recently and even though some

pilots requested and have been awarded resources, it has not been the focus of

benchmarking for this deliverable.

System Partition RES UAP UB WF MTW HiDALGO2

Discoverer CPU

Karolina
CPU

GPU

LUMI
CPU

GPU

Meluxina

CPU

GPU

FPGA

Vega
CPU

GPU

Leonardo
CPU

GPU

MareNostrum5
CPU

GPU

Deucalion

CPU-x86

CPU-ARM

GPU

 D3.2 – Scalability, Optimization and Co-Design Activities

Document name: D3.2 – Scalability, Optimization and Co-Design Activities Page: 15 of 75

Reference: D3.2 Dissemination: PU Version: 1.0 Status: Final

Table 2. Hardware configuration of CPU partitions used during the reporting period (M13-M28)

 CPU/node
Cores/
node

Mem. Interconnect

Altair 2x INTEL Xeon 8268 48
192GB InfiniBand @ 200 Gb/s

Proxima
2 x Intel Xeon

Platinum 8480p
112

LUMI

2x AMD EPYC 7H12 128
256GB

Slingshot-11 @ 200 Gb/s

Discoverer

InfiniBand @ 200 Gb/s

Karolina

Vega

MeluXina 512GB

Leonardo 2 x Intel Xeon
Platinum 8480p

112
512GB

MareNostrum5 256GB

Deucalion
2x AMD EPYC 7742 128 256GB

1x FUJITSU A64FX 48 32GB InfiniBand @ 100 Gb/s

Table 3. Hardware configuration of GPU partitions used during the reporting period (M13-M28)

 CPU Mem. GPU GPU Mem.

LUMI
1x AMD EPYC

7A53
512 GB 4 AMD MI250x 64 GB HBM2

Karolina
2x AMD EPYC

7763
1 TB 8x NVIDIA A100 40 GB HBM2

Meluxina
2x AMD EPYC

7452

512GB 4x NVIDIA A100 80 GB HBM2
Vega

2x AMD EPYC
7H12

Leonardo 1x Intel Ice Lake

Deucalion
2x AMD EPYC

7742

MareNostrum5
2x Intel Xeon

Platinum 8460Y
512GB 4x NVIDIA H100 64 GB HBM2

Table 2 and

Table 3 present the hardware characteristics of all EuroHPC machines currently

available via development calls, together with the two PSNC [6] partitions (Altair,

Proxima) that are available for HiDALGO2. As the Intel-based systems (Leonardo and

MareNostrum5) became available after D3.1, deployment activities during the

reporting period focused mainly on them. Further, as most EuroHPC systems feature

GPU partitions with NVIDIA A100s, the HiDALGO2 pilots focused mainly on Karolina

(8xNVIDIA A100), LUMI-G (4xAMD MI250x) and MareNostrum5 (4xNVIDIA H100) in

an attempt to cover different accelerator architectures, taking of course into account

the effort required for porting their codes.

 D3.2 – Scalability, Optimization and Co-Design Activities

Document name: D3.2 – Scalability, Optimization and Co-Design Activities Page: 16 of 75

Reference: D3.2 Dissemination: PU Version: 1.0 Status: Final

3 HiDALGO2 pilots’ benchmarking

This section outlines the benchmarking and optimization efforts carried out for the

HiDALGO2 pilots. Table 4 provides an overview of the current benchmarking status

across the available EuroHPC JU systems. It is noted that Deucalion became

accessible only recently and has not yet been the focus of benchmarking. Similarly,

MeluXina-GPU and Leonardo-GPU share the same architecture as VEGA-GPU, and

for this reason, they have not been prioritized for deployment at this stage.

Table 4. Current benchmarking coverage of the HiDALGO2 project

3.1 Renewable Energy Sources (RES)

The Renewable Energy Sources pilot is dealing with three different scenarios: i)

prediction of energy produced by wind farms, ii) prediction of energy produced by

photovoltaic (PV) systems, and iii) prediction of the damages to the overhead electrical

network. In the previous deliverable (D3.1), the focus of benchmarking was on the

damages scenario for a small domain representing part of a major city in Poland. The

solver scaled well up to a certain point, after which the relatively small problem size

per CPU and the communication overheads impaired further scaling. In this

deliverable, the scalability performance analysis is extended with: i) a larger domain

System Partition Pilots Benchmarked applications

Discoverer CPU 2 UAP-FOAM, UAP-Xyst, UB-Ktirio

Karolina
CPU 3 UAP-RedSIM, WF-WRF, UB-Ktirio

GPU 1 UAP-RedSIM

LUMI
CPU 4

RES-EULAG, UAP-FOAM, UAP-Xyst, UAP-
RedSIM, WF-WRF, MTW-walBerla

GPU 1 MTW-walBerla

Meluxina

CPU 1 UAP-FOAM, UAP-Xyst, UB-Ktirio

GPU Similar architecture with VEGA-GPU

FPGA No pilots with FPGA implementations

Vega
CPU 2 WF-WRF, UB-Ktirio

GPU 1 UAP-RedSIM

Leonardo
CPU 2 RES-EULAG, WF-WRF

GPU Similar architecture with VEGA-GPU

MareNostrum5
CPU 1 MTW-walBerla

GPU 1 MTW-walBerla

Deucalion

CPU-x86
Will be the focus of benchmarking in the
next part of the project

CPU-ARM

GPU

 D3.2 – Scalability, Optimization and Co-Design Activities

Document name: D3.2 – Scalability, Optimization and Co-Design Activities Page: 17 of 75

Reference: D3.2 Dissemination: PU Version: 1.0 Status: Final

with greater resolution for the damages case, and ii) a new scenario dedicated to PV

energy production (CBPIO-PV).

3.1.1 Pilot progress and updates

The newly introduced scenario, CBPIO-PV, targets the prediction of energy production

of photovoltaic systems. While it uses the same solver with the damages scenario

(EULAG), there is a difference in setting up the pre-conditioner and the characteristics

of some related physics. More specifically, EULAG can account either for the

orography (terrain elevation) or for the structure of the buildings, with the latter being

used in CBPIO-PV. Additionally, CBPIO-PV uses a new dataset prepared for the sake

of this scenario, which depicts part of Poznan, where the PSNC HQ is located, on a

roof of which a photovoltaic installation exists. The grid resolution is 2136x2363x46

with horizontal resolution of just 1m, allowing to test EULAG scalability for a far larger

domain and with greater horizontal resolution.

For the damages scenario, no code changes were made compared to D3.1.

3.1.2 Co-design activities

The RES pilot has pursued two key co-design directions during this period: i) improving

workflow portability across HPC systems, and ii) evaluating opportunities for improving

performance through domain decomposition refinements.

With regard to the former, the RES pilot encountered several deployment and

portability challenges, especially on the Karolina system, where hardware and

networking issues prevented the successful completion of benchmarking within the

allocated node-hours. The RES workflow is currently orchestrated through a runner

based on Conda, which has proven problematic across HPC systems due to platform-

specific constraints, such as file number limits and Conda-related compatibility issues.

To address these limitations and improve reproducibility, the team is exploring the

definition of system-specific configuration recipes or, alternatively, the delivery of a

dockerised version of the RES application. The final target of these efforts is the

automated environment setup for benchmarking and production runs, and is still under

development.

With regard to the latter, from a performance standpoint, the parallelisation strategy of

the RES solver is based on a Cartesian grid decomposition across MPI processes.

Current observations suggest that the default CPU-to-MPI mapping applied

automatically by the HPC systems provides effective utilisation and good efficiency.

However, as outlined in the following sections, further improvements may be achieved

by considering network topology during the domain decomposition process. This could

help refine the mapping of computational domains to processing elements, potentially

enhancing performance in communication-heavy phases of the workflow.

 D3.2 – Scalability, Optimization and Co-Design Activities

Document name: D3.2 – Scalability, Optimization and Co-Design Activities Page: 18 of 75

Reference: D3.2 Dissemination: PU Version: 1.0 Status: Final

3.1.3 Performance analysis

RES - System configuration

The RES pilot was previously available on LUMI and PSNC’s Altair machine. This

deliverable focuses on analysing the performance achieved on different CPU vendors,

AMD (LUMI-C) and Intel CPUs (Leonardo, Altair, Proxima). Table 5 describes the

programming and runtime environments used in each system.

Table 5. Programming & runtime environment for RES benchmarks

 Altair LUMI Proxima Leonardo

Compiler GNU Fortran
v.6.2.0

GNU Fortran
v.10.3.0

GNU Fortran
v.11.5.0

GNU Fortran
v12.2.0

Parallel
framework OpenMPI v.4.1.0

Cray MPICH
v.8.1.27

OpenMPI
v4.1.7a

OpenMPI v4.1.6

Libraries

NetCDF-C 4.8.1 4.9.2 4.8.1 4.9.2

NetCDF-Fortran 4.5.3 4.6.1 4.5.3 4.6.1

HDF5-C 1.12.1 1.14.1 1.12.1 1.14.3

HDF5-Fortran 1.12.1 1.14.1 1.12.1 1.14.1

Python 3.10.11 3.9.17 3.10.11 3.10.2

RES - Benchmarking configuration

The performance analysis presented in this deliverable was conducted for four

scenarios, the details of which (grid resolution, horizontal spacing, simulated time, and

timestep) are presented in Table 6, together with the HPC systems that were used for

their execution.

Table 6. Details of RES-EULAG benchmarking scenarios

Scenario Grid resolution
Horiz.

spacing
Simul.
time

Timestep Target systems

R10-dist 320x252x46 10m 1h 0.05 Leonardo

R10 320x252x46 10m 1m 0.05
Leonardo, LUMI,
Altair, Proxima

R5 608x472x46 5m 1h 0.05
Leonardo, LUMI,
Altair, Proxima

CBPIO-PV-R1 2136x2363x46 1m 1m 0.005 Leonardo

RES - Results & analysis

 D3.2 – Scalability, Optimization and Co-Design Activities

Document name: D3.2 – Scalability, Optimization and Co-Design Activities Page: 19 of 75

Reference: D3.2 Dissemination: PU Version: 1.0 Status: Final

The R5 scenario was evaluated in D3.1 for up to 85 nodes on Altair and up to 10 on

LUMI. Figure 1 depicts the improved scalability for this scenario. It uses up to 128

nodes (6144 cores) on Altair, 64 nodes (8192 cores) on LUMI, 32 nodes (3584 cores)

on Proxima and 16 nodes (1792 cores) on Leonardo. For all systems, the code shows

relatively good scalability in the initial phase, typically up to around 8-16 nodes. The

speedup increases almost linearly with the number of nodes, indicating that there is

sufficient computation to utilize more processors effectively. As the number of nodes

increases further, the speedup starts to plateau and eventually decrease for some

systems, which indicates that the increased communication overhead and the

synchronization costs start posing a serious bottleneck to computation.

Figure 1. RES-EULAG per node speedup for the R5 scenario

A closer look at system-specific performance reveals major differences in scalability

behaviour. Proxima demonstrates good scalability up to 8 nodes, showing trends

similar to Leonardo. However, beyond this point, speedup on Proxima plateaus

significantly and even declines slightly between 16 and 32 nodes, ultimately achieving

the lowest speedup among the four tested systems at higher node counts. Since

Leonardo and Proxima are the two systems with the most recent Intel CPUs, this

suggests that the RES workload faces architectural constraints on such systems.

Further analysis is required to better understand these disparities and identify

optimisation opportunities, which is why Leonardo was chosen for RES profiling and

further analysis. In contrast, LUMI exhibits the best scalability across all platforms

tested. It maintains near-linear speedup up to 32 nodes and continues to scale

relatively well up to 64 nodes before gradually plateauing. The super-linear scaling

behaviour that was also observed in D3.1. for RES persists, and is attributed to better

cache utilisation in higher node counts.

 D3.2 – Scalability, Optimization and Co-Design Activities

Document name: D3.2 – Scalability, Optimization and Co-Design Activities Page: 20 of 75

Reference: D3.2 Dissemination: PU Version: 1.0 Status: Final

Figure 2. RES-EULAG per node speedup for the R10 scenario

Figure 2 depicts the results for the R10 problem. Similarly to the R5 scenario, all

systems demonstrate relatively initial good scalability. Again, LUMI generally shows

the best performance and maintains a higher speedup compared to Leonardo and

Altair across the higher node counts. On the other hand, saturation appears relatively

sooner compared to R5, which is expected since it uses a 3.5x smaller subdomain and

therefore is less compute-intensive.

Figure 3. RES-EULAG per node speedup for the CBPIO-RV-R1 fine mesh

CBPIO-RV-R1 is the new scenario introduced in this deliverable by RES, in order to

evaluate scalability for very fine meshes using a 1m horizontal resolution. The

scalability results for Leonardo system are depicted in Figure 3.

 D3.2 – Scalability, Optimization and Co-Design Activities

Document name: D3.2 – Scalability, Optimization and Co-Design Activities Page: 21 of 75

Reference: D3.2 Dissemination: PU Version: 1.0 Status: Final

The pilot exhibits relatively good scalability between 16 and 32 nodes, as the speedup

nearly doubles as the number of nodes doubles, suggesting efficient utilisation of the

increased computational resources. There is a significant performance peak around

48 nodes, achieving a speedup of approximately ~39x, which represents an optimal

point where the increased parallelism benefits this specific fine mesh size. However,

beyond this peak, the performance collapses drastically. The speedup plummets to

approximately 8 at 128 nodes, and adding more nodes after that point does not affect

performance. We attribute this dramatic performance drop to inter-node

communication overheads, which become increasingly dominant for this very fine

mesh at higher node counts, since a significantly larger amount of data needs to be

exchanged between neighbouring computational units (which are distributed across

different nodes). This puts a much higher strain on Leonardo’s interconnect and makes

this problem severely communication-bound. Additionally, the finer mesh leads to

increased synchronisation between different parts of the computation running on

different nodes, further contributing to the problem. Consequently, while load balance

is still relatively good locally, the rate at which data can be transferred between the

memory systems of different nodes becomes the main bottleneck.

Compared to the previous scalability plots where saturation occurred more gradually,

the very fine mesh used here leads to a much more abrupt performance degradation

after the peak. This highlights the sensitivity of the application's scalability to the

problem size (mesh resolution) and its impact on communication demands.

Consequently, for this type of problem, optimisation efforts have to focus on reducing

and optimising inter-node communication to achieve better scalability. The size and

management of halo cells (overlapping data regions exchanged between neighbours)

should be analysed to find whether it can be reduced, or if the update can be performed

more efficiently. Another approach is to schedule communication in a way that

minimises network contention.

Finally, as Leonardo showed very limited scalability compared to LUMI despite being

a more recent system, we used the R10-dist scenario to assess scalability when using

all, half, and a quarter of the available CPU cores per node (with unused cores still

reserved to isolate performance). Figure 4 depicts execution times for various number

of total CPU cores while using all, half, and a quarter of available CPUs within a node.

When using all the CPUs of the allocated nodes, execution time decreases as the

number of cores increases up to around 224 cores. However, beyond this point, the

execution time starts to increase significantly, indicating poor scalability and

diminishing returns from adding more full nodes. On the other hand, using half or a

quarter of the available CPUs per node demonstrates better initial scalability compared

to the full node configuration. The execution times decrease more consistently as the

number of cores increases in the lower total core counts, and using 1/4 of available

CPUs is the less time-consuming execution. The increasing execution time for using

 D3.2 – Scalability, Optimization and Co-Design Activities

Document name: D3.2 – Scalability, Optimization and Co-Design Activities Page: 22 of 75

Reference: D3.2 Dissemination: PU Version: 1.0 Status: Final

all the node’s CPUs at higher total core counts suggests that the overhead associated

with managing large numbers of cores within fewer nodes becomes a dominant factor.

Figure 4. RES-EULAG execution times for the R10-dist scenario when using 25%, 50% and
100% of available CPUS per node

While this issue needs to be further investigated, the potential bottlenecks are:

• memory contention, as when using larger number of CPUs per node the

available memory bandwidth for each core is limited;

• cache coherency, as with larger number of CPUs per node the scope of cache

coherence is larger, leading to slower data accesses, and

• inter-node bandwidth, as distributing the work across more nodes can allow for

better utilisation of the aggregate inter-node bandwidth.

RES - Profiling

To verify previously observed performance issues in the RES pilot, Score-P was used

for profiling and event tracing. Since profiling generates large amounts of data, the

analysis was limited to the R80 scenario (grid size: 38×30×46, 80 m horizontal

resolution), running on 8 CPU cores. This setup was chosen to keep the profiling data

manageable while still capturing key performance characteristics. The profiling output,

shown in Figure 5, focuses on two main parts of the execution: COM, representing

computation, and MPI, representing communication.

The report shows that MPI communication takes up around 46% of the total runtime,

and is not overlapped by the computation phase. This confirms that communication

delays are a common issue for this setup. The problem appears to be more visible on

newer CPU architectures, where faster processors complete the computation more

quickly, leading to more time spent waiting on communication. These findings suggest

 D3.2 – Scalability, Optimization and Co-Design Activities

Document name: D3.2 – Scalability, Optimization and Co-Design Activities Page: 23 of 75

Reference: D3.2 Dissemination: PU Version: 1.0 Status: Final

that improving communication efficiency and reviewing how the domain is split across

processors could help improve performance further.

Figure 5. RES timing breakdown - profiling summary

To gain more detailed insights into the RES pilot's performance, the Cube software

was used to analyse the profiling traces. Cube focuses on the functions executed and

their call paths, providing an overview of the time spent in each function and the

distribution of tasks across CPUs (MPI processes), which helps identify hotspots in

both computation and communication. The basic profiling results are shown in Figure

6. The left panel presents any performance metrics, which for this case has been

configured to execution time. The middle panel displays the execution tree with all

called functions and their execution times. The right panel illustrates how each

function's work is distributed across MPI processes.

Figure 6. RES Cube basic profiling

In addition, Cube provides several efficiency metrics to help analyse the performance

of parallel applications. The ones utilized for RES profiling were:

 D3.2 – Scalability, Optimization and Co-Design Activities

Document name: D3.2 – Scalability, Optimization and Co-Design Activities Page: 24 of 75

Reference: D3.2 Dissemination: PU Version: 1.0 Status: Final

• Parallel Efficiency, which indicates the proportion of time spent on computation

versus communication. For example, a value of 80% means that 80% of the

total execution time was dedicated to computation, while the remaining 20%

was spent on communication.

• Load Balance Efficiency, which measures the uniformity of computational

workload distribution across MPI processes. It is calculated as the ratio of

average computation time to the maximum computation time among all

processes, highlighting any imbalance in workload distribution.

• Communication Efficiency, which assesses the impact of communication

overhead on overall performance. It reflects the proportion of time spent in

communication routines relative to computation, identifying inefficiencies due to

excessive communication time.

Table 7. RES profiling breakdown of efficiency metrics per function

Function Time Parallel Eff. Load Balance Eff. Communication Eff.

tinit 8% 0.64 (good) 0.81 (very good) 0.79 (good)

velbc 3% 0.47 (fair) 0.94 (very good) 0.50 (fair)

gcrk 24% 0.62 (good) 0.98 (very good) 0.64 (good)

advec 33% 0.49 (fair) 0.99 (very good) 0.50 (fair)

dissip 21% 0.47 (fair) 0.98 (very good) 0.47 (fair)

Table 7 shows the corresponding metrics for the most time-consuming routines. The

load balance is good across all routines, indicating an even distribution of

computational work. However, communication efficiency is lower, which impacts the

overall parallel efficiency, particularly in the velbc, advec, and dissip functions.

Considering both the percentage of total execution time taken by these functions and

their parallel efficiency, future optimization efforts for RES should focus particularly on

the advec and the dissip functions.

RES – Summary and next steps

Concluding, the RES pilot has identified several areas for performance improvement

based on initial profiling and scalability analyses. First, to better understand the

application's behaviour under increased parallelism, further profiling will be conducted

with a higher number of MPI processes. This will help assess how efficiency metrics

evolve as the process count increases. In addition to this, the analysis will explore

metrics related to communication efficiency, such as serialization and transfer

efficiency. Serialization efficiency will reveal which processes experience delays

waiting for others, while transfer efficiency will provide insights into whether

overlapping communication with computation could improve overall performance.

 D3.2 – Scalability, Optimization and Co-Design Activities

Document name: D3.2 – Scalability, Optimization and Co-Design Activities Page: 25 of 75

Reference: D3.2 Dissemination: PU Version: 1.0 Status: Final

Second, there is potential to expand co-design exploration. Current domain

decomposition in RES utilizes a uniform Cartesian grid, distributing equal-sized

subdomains across CPUs, which does not account for hardware-specific

characteristics like socket configurations, node boundaries, or the network topology.

Hence, leveraging this type information for each system could lead to more efficient

domain distribution and reduced communication overheads. To that end, further

analysis of the communication patterns is planned to identify the type and frequency

of data exchange between processes, which may reveal opportunities to reduce the

volume of data transferred or the number of communication calls. Additionally, RES

will explore the overlap of communication and computation phases and vectorizing

computations to improve performance at a lower level.

3.2 Urban Air Project (UAP)

The purpose of the UAP pilot is to calculate airflow within cities. The most time and

resource-demanding parts of this process are the different CFD workflows used during

simulation. UAP uses three different codes for CFD: OpenFOAM [7] [8], Xyst [9] and

RedSIM [10].

In D3.1 the benchmarks focused on the scalability of OpenFOAM and Xyst. All UAP

codes showed high scalability, with OpenFOAM scaling up to 128 nodes in Discoverer

and Xyst scaling up to 512 nodes in LUMI and MeluXina. Additionally, initial results

were presented for RedSIM for both CPU and GPU execution, using up to 16 nodes

for the CPU and 8 nodes for the GPU implementation, with good scalability.

This deliverable focuses mainly on: i) performance analysis and improvements for all

UAP codes, and ii) extreme-scaling for OpenFOAM and Xyst.

3.2.1 Pilot progress and updates

UAP-FOAM

Table 8. UAP-FOAM benchmark workflow update

simulation part execution previous new

data import serial once once

mesh conversion serial once once

decompose serial each #nodes twice

renumberMesh parallel each #nodes once

potentialFoam parallel each #nodes once

simpleFoam [11] parallel each #nodes once

changeDictionary parallel each #nodes once

 D3.2 – Scalability, Optimization and Co-Design Activities

Document name: D3.2 – Scalability, Optimization and Co-Design Activities Page: 26 of 75

Reference: D3.2 Dissemination: PU Version: 1.0 Status: Final

pimpleFoam [12] parallel each #nodes each #nodes

To achieve higher scaling, focus was set on LUMI, for which special rules had to be

followed resulting in updates to the benchmark workflow. Since LUMI does not support

multiple parallel executions with one submit, the benchmarking process has been

altered as such: most of the simulation workflow is done once on a single node, and

only the final, most relevant part is run on multiple nodes. These changes are described

in detail on Table 8.

To assess the limits of the UAP-FOAM code, parallel performance was measured by

inserting new, more detailed timers in the OpenFOAM code to assess the average,

minimum and maximum time for MPI Reductions, requests and wait operations. Figure

7 shows that all communication times decrease until about 32-64 nodes, after which

point they stay relatively stable. Consequently, after that point communication does not

scale, leading to communication-bound executions.

Figure 7. Various UAP-FOAM MPI call times averages and maximums. Call types with negligible
or zero runtimes are ignored.

To delve deeper, mesh decomposition properties are shown in Figure 8. While

communication times do not shorten, the number of cells and neighbouring cells are

decreasing in number. Consequently, balancing domain decomposition is a valid

approach for optimization, as currently domain decomposition focuses on distributing

 D3.2 – Scalability, Optimization and Co-Design Activities

Document name: D3.2 – Scalability, Optimization and Co-Design Activities Page: 27 of 75

Reference: D3.2 Dissemination: PU Version: 1.0 Status: Final

cells evenly, contrary to process-to-process boundary cells. The differences in the

number of neighbouring processes also suggests a possible opportunity for

optimization.

Figure 8. UAP-FOAM mesh decomposition metric averages and maximums.

UAP-RedSIM

Since RedSIM was at an earlier development phase during D3.1, its parallelization and

performance optimizations have advanced rapidly, and are therefore explained in

detail here. RedSIM is an iterative CFD solver, currently using first and second order

explicit time-stepping methods as an integrator. Every simulation done in RedSIM can

be broken down into two major phases:

• An initialization phase, where the polyhedral CFD mesh is partitioned across

nodes, which includes setting up ghost cells and boundary conditions.

• A runtime phase, where RedSIM computes the derivative for each cell and does

a step with the Explicit Euler method with a certain timestep.

RedSIM supports both CPU and GPU nodes for cluster computation, and is based on

a hybrid MPI implementation: it assigns an MPI process per CPU socket, and manually

handles multithreading via Linux APIs. This is especially important for the CUDA GPU

 D3.2 – Scalability, Optimization and Co-Design Activities

Document name: D3.2 – Scalability, Optimization and Co-Design Activities Page: 28 of 75

Reference: D3.2 Dissemination: PU Version: 1.0 Status: Final

version of the code, since with GPUs it is impossible to go down to a thread level

granularity with MPI.

While the initialization phase itself is important, the runtime phase is the most critical.

RedSIM uses the Explicit Euler method with global time stepping to simulate unsteady

flows. As a result, each iteration requires synchronisation of adjacent mesh cells

between MPI processes, making mesh partitioning a critical factor for performance,

since inefficient partitioning can lead to excessive communication between CPU

nodes. Initial experiments used METIS and PARMETIS for partitioning; however,

METIS is limited by its single-threaded implementation, and PARMETIS proved too

slow in hybrid configurations. Based on these limitations, Zoltan’s GRAPH [13]

partitioning mode was selected as the preferred method for workload distribution. The

partitioning is performed once during initialisation and remains fixed throughout the

simulation. Additionally, the MPI_GRAPH communicator topology is used to inform the

MPI runtime about major data exchange patterns between nodes.

Another problem due to the use of global time stepping is that each simulation step

requires collective communication across all MPI processes at the end of an iteration.

This is an inherent consequence of simulating unsteady flows and cannot be avoided

within the current method. However, ongoing work explores a heuristic approach to

estimate the global time step (τ) without requiring full communication between nodes,

potentially reducing the associated overhead.

An example of the breakdown of MPI calls in a single iteration (without any exports /

file writes in the iteration) is given below. This applies to the GPU version of RedSIM

as well, with a few key differences mentioned later.

• BEGIN SYNCHRONIZATION OF ADJACENT CELLS BETWEEN PARTITIONS.

- MPI_Isendrecv called for each adjacent part

• END SYNCHRONIZATION OF ADJACENT CELLS BETWEEN PARTITIONS.

- MPI_WaitAll called once.

• LOCAL TIME-STEPPING TAU MINIMUM REDUCTION

- MPI_Allreduce with MPI_MIN called once.

• (OPTIONAL IF COMPUTING RESIDUAL) RESIDUAL COMPUTATION

- MPI_Allreduce with MPI_SUM called once.

RedSIM has been designed from the outset to support both GPU and CPU

architectures and therefore does not require any porting. All CUDA kernels used for

flux computations have been manually written and fine-tuned, with PTX assembly

inspected and optimised at the instruction level. Early performance analysis was

conducted using NVIDIA’s NSight Compute toolkit on Windows, which helped identify

initial hotspots. In multi-GPU configurations, the main performance challenge was

heterogeneous communication latency, i.e., that communication between GPUs on the

 D3.2 – Scalability, Optimization and Co-Design Activities

Document name: D3.2 – Scalability, Optimization and Co-Design Activities Page: 29 of 75

Reference: D3.2 Dissemination: PU Version: 1.0 Status: Final

same node is significantly faster than inter-node communication between CPUs. To

account for this, RedSIM employs the MPI_GRAPH communicator topology in

combination with OpenMPI’s CUDA-aware MPI support. Future work is moving

towards manual NVLink-based communication and workload management, in order to

further improve performance for the GPU implementation.

UAP-Xyst

Work on Xyst continued after D3.1 on developing, testing, validating, verifying,

documenting, and benchmarking solvers specialized to different types of flow

problems. A high-level overview of the current solvers used in Xyst can be found on

https://xyst.cc/inciter_main.html. The two latest solvers under verification and

validation are ChoCG and LohCG, targeting constant-density (incompressible) flow.

3.2.2 Performance analysis

UAP-FOAM – System configuration

All executions of UAP-FOAM were conducted on LUMI. Table 9 details the

programming and runtime environments used for all the runs.

Table 9. Programming & runtime environment for UAP-FOAM benchmarks

OpenFOAM LUMI

Compiler gcc/13.2

Parallel framework cray-mpich/8.1.29

Libraries

Boost 1.83.0

SCOTCH 7.0.4

UAP-FOAM – Benchmarking configuration

While UAP-FOAM model development is in the direction of supporting temperature

and buoyancy, new mesh models are introduced to assess model accuracy, to improve

adaptation to urban geometry and improve mesh generation automation. The meshes

are generated using OpenFOAM’s snappyHexMesh utility. Although the same

geometry of Győr city is used as for previous benchmark models, resolution, cell sizes,

and cell counts are different. While a very finely detailed class of 49 meshes were

generated, only four are currently used in the benchmark. In the generation process,

physical sizes and scales remain unchanged, as do refinement levels. The various cell

resolutions are acquired by changing the base - coarsest - cell size, thus having

different cell sizes at all refinement levels. Table 10 shows the new mesh properties.

https://xyst.cc/inciter_main.html

 D3.2 – Scalability, Optimization and Co-Design Activities

Document name: D3.2 – Scalability, Optimization and Co-Design Activities Page: 30 of 75

Reference: D3.2 Dissemination: PU Version: 1.0 Status: Final

Table 10. Details of UAP-FOAM benchmark meshes

name type cell count

1 b20 polyhedra 35.2M

2 b40 polyhedra 10.6M

3 b80 polyhedra 2.83M

4 b160 polyhedra 896k

UAP-FOAM – Results & analysis

The results depicted in Figure 9 show the speedup progression from 1 to 512 CPU

nodes (128-65536 cores). Only pimpleFoam, the simulation part, is benchmarked. The

time between the first and last iteration is measured, skipping initialization which is

minimal. As expected, the finer grids scale better, since they entail more computation.

The speedup for the highest mesh size increases in a superlinear fashion up to 128

nodes, above which point it reaches a plateau.

Figure 9. Per node speedup values for pimpleFoam on various number of nodes on LUMI.
Multiple mesh sizes are shown from coarsest (b160, top left) to finest (b20, bottom right).

 D3.2 – Scalability, Optimization and Co-Design Activities

Document name: D3.2 – Scalability, Optimization and Co-Design Activities Page: 31 of 75

Reference: D3.2 Dissemination: PU Version: 1.0 Status: Final

Figure 10. Per node execution breakdown for pimpleFoam on various number of nodes on
LUMI. Multiple mesh sizes are shown from coarsest (b160, top left) to finest (b20, bottom right)

To gain more insight on the execution as a whole, regional timestamping and intrinsic

profiling using std::chrono::high_resolution_clock was used in the code. As Figure

10shows, initialization and solving the pressure equation are the most dominant factors

in runtime. From these two, since only the pressure equation solver scales with

simulated time (the initialization is run only once), it is reasonable to focus on that to

improve performance.

UAP-RedSIM – System configuration

UAP-RedSIM has been executed on the CPU and GPU partitions of Karolina. Table

11 provides the details of the programming and runtime environments used for all runs.

Table 11. Programming & runtime environment for UAP-RedSIM benchmarks

RedSIM Karolina-CPU Karolina-GPU

Compiler gcc 12.2 cuda 12.3

Parallel framework openmpi 5.0.5 openmpi 5.0.5

UAP-RedSIM – Benchmarking configuration

Benchmarks for RedSIM were performed in the context of Urban Air Pollution for the city of
Gyor, with 2, 10 and 30 million cell mesh sizes, both for CPU and GPU as described in

Table 12. All simulations were first order in time and first order in space. The CPU

RedSIM code was run using ParMETIS, while the GPU with Zoltan GRAPH.

 D3.2 – Scalability, Optimization and Co-Design Activities

Document name: D3.2 – Scalability, Optimization and Co-Design Activities Page: 32 of 75

Reference: D3.2 Dissemination: PU Version: 1.0 Status: Final

Table 12. Details of UAP-RedSIM benchmark meshes

City Mesh size Iterations

Gyor 2M 10000

Gyor 10M 5000

Gyor 30M 1000

UAP-RedSIM – Results & analysis

Figure 11 and Figure 12 depict the speedup observed for the CPU and GPU

implementations of UAP-RedSIM respectively. RedSIM-CPU scales well up to 64

nodes (8192 cores) for 30M cells, and 32 nodes for smaller mesh sizes. RedSIM-GPU

also showcases remarkable performance, scaling up to 32 GPUs for the 30M mesh

size and 16 GPUs for 10M mesh size, demonstrating scalability beyond intra-node, as

Karolina has 8 GPUs per node. Inconsistent behaviour was registered for 16 GPUs at

2M mesh size. In comparison with D3.1, the CPU parallel version was reworked from

scratch. The original version worked in a master-slave model, running one MPI process

on each of the slave nodes, and OpenMP threads for intra-node parallelization. The

new implementation benchmarked for this deliverable RedSIM uses a completely

democratic code for the CPU implementation, using no master node and running two

processes per node (one per socket) and OpenMP threads for parallelizing within the

sockets. This fundamentally new approach resulted in completely different scaling

behaviour. Alas, the code still produces a reasonably good performance up to 64

nodes.

In comparison with D3.1, the GPU version also got completely reworked. The original

version was based solely on CUDA, and while it supports intra-node parallelization

within its API, maximum number of GPU’s was limited to 8, provided by Karolina’s GPU

node. The new hybrid MPI-CUDA based implementation supports multi-node

execution, thus allowing runs up to more than 8 GPUs. All resulted GPU performance

was excellent within one node. The 10M mesh scales up to 16, and the 30M mesh up

to 32 nodes almost linearly in this section.

 D3.2 – Scalability, Optimization and Co-Design Activities

Document name: D3.2 – Scalability, Optimization and Co-Design Activities Page: 33 of 75

Reference: D3.2 Dissemination: PU Version: 1.0 Status: Final

Figure 11. Per node speedup for the MPI parallelized CPU version of RedSIM

Figure 12. Speedup for the MPI-CUDA parallelized GPU version of RedSIM

UAP-Xyst – System configuration

Performance tests for Xyst have been carried out on LUMI using the configuration

described in Table 13.

Table 13. Programming & runtime environment for UAP-Xyst benchmarks

Xyst LUMI

Compiler gcc/12.3

Parallel framework
cray-mpich/8.1.29

Charm++ v7.0.0.rc2

Libraries

mpich-ofi 12.3

netCDF 4.9.0

UAP-Xyst – Benchmarking configuration

 D3.2 – Scalability, Optimization and Co-Design Activities

Document name: D3.2 – Scalability, Optimization and Co-Design Activities Page: 34 of 75

Reference: D3.2 Dissemination: PU Version: 1.0 Status: Final

All UAP-Xyst benchmarks were done with a 133M points, 749M cell count tetrahedral

mesh. For benchmark model for the RieCG and ZalCG compressible solvers, the

Taylor-Green vortex problem was used. With the LohCG incompressible solver the lid-

driven cavity flow field was computed.

UAP-Xyst – Results & analysis

The benchmarks include running three Xyst solvers above 65K CPU cores for the first

time, as LUMI "hero" runs. These computed verification problems of academic interest,

and were meant to stress-test the entire Xyst I/O, startup, time stepping, and

asynchronous message passing infrastructure up to computational meshes with

approximately 800-million elements, corresponding to over 100-million nodes (solver

degrees of freedom, DOF). Strong scaling up to almost 200-thousand CPU cores have

been established for two of the solvers for the first time.

Figure 13. UAP-Xyst per node speedup for the ZalCG solver on LUMI

 D3.2 – Scalability, Optimization and Co-Design Activities

Document name: D3.2 – Scalability, Optimization and Co-Design Activities Page: 35 of 75

Reference: D3.2 Dissemination: PU Version: 1.0 Status: Final

Figure 14. UAP-Xyst per node speedup for the RieCG solver on LUMI.

Figure 15. UAP-Xyst per node speedup for the LohCG solver on LUMI.

Figure 13, Figure 14 and Figure 15 show scaling results for three different solvers:

ZalCG, RieCG and LohCG, respectively. For all solvers, a minimum of 4 nodes were

benchmarked, achieving a speedup of 4x. As it is evident in the figures, Xyst scales

for all solvers in a superlinear fashion up to 128 nodes and becomes slightly sublinear

beyond that point.

In general, it is evident that Xyst can cope with problems of O(10^8) DOF using

compute resources of O(10^5) CPUs across thousands of networked compute nodes.

Strong scaling does not yet reach the plateau of diminishing returns for any of the

solvers tested even at the largest core counts of almost 200K CPUs for RieCG and

LohCG. Additionally, the largest runs corresponded to about a thousand DOF/core

 D3.2 – Scalability, Optimization and Co-Design Activities

Document name: D3.2 – Scalability, Optimization and Co-Design Activities Page: 36 of 75

Reference: D3.2 Dissemination: PU Version: 1.0 Status: Final

which means runtime could potentially still be decreased using even more resources,

if available.

As a result, the absolute performance for the LohCG incompressible-flow solver is

below 4 milliseconds per time step with a O(10^8) DOF problem without reaching a

scalability bottleneck. More information about these results can be found at [40].

UAP - Summary and next steps

The latest UAP deliverable shows that all three CFD codes—OpenFOAM (UAP-

FOAM), RedSIM and Xyst—scale well up to hundreds of nodes, with OpenFOAM

achieving superlinear speedups to 128 nodes on LUMI before plateauing, RedSIM’s

CPU and GPU versions scaling to 64 CPU nodes and 32 GPUs on Karolina, and Xyst’s

solvers demonstrating superlinear scaling to almost 200 000 cores on LUMI with no

bottleneck yet. Detailed MPI timing in UAP-FOAM revealed that communication costs

level off beyond 32–64 nodes, suggesting that adopting boundary-aware or adaptive

mesh decompositions could reduce inter-process traffic. RedSIM’s shift to Zoltan

GRAPH partitioning and an MPI_GRAPH topology has unlocked near-linear scaling,

and Xyst’s hero runs on a 749 M-cell mesh confirm its ability to handle O(10^8) DOF

at extreme scale.

3.3 Urban Building (UB)

The Urban Building (UB) (aka Ktirio Urban Building [14]) pilot’s purpose is to simulate

the energy behaviour of buildings at scales; ranging from building scale to entire cities

and beyond. During execution, the simulation estimates each building’s thermal

comfort, energy consumption and air quality, and the goal is to generate these

predictions over periods ranging from one month to a full year, reflecting a realistic

environment. This involves incorporating factors such as weather conditions,

occupancy patterns, and surrounding vegetation.

The pilot considers different degrees of accuracy, referred to as the Level of Detail

(LOD). In the UB context, these representations of buildings are classified as:

• LOD-0: Buildings are represented as oriented bounding boxes.

• LOD-1: Buildings are represented as multi-polygonal extrusions, optionally

including a catalogue of roof shapes.

• LOD-2: Buildings are detailed from an Industry Foundation Classes [15] (IFC)

description encompassing many intricate details.

 D3.2 – Scalability, Optimization and Co-Design Activities

Document name: D3.2 – Scalability, Optimization and Co-Design Activities Page: 37 of 75

Reference: D3.2 Dissemination: PU Version: 1.0 Status: Final

Figure 16. UB pilot code pipeline

The UB simulation pipeline can be separated into the following steps as seen on Figure

16:

• Input data generation (using Ktirio-GUI): The city energy simulation requires

the geometric description of a geographic area containing buildings. To do so,

the Ktirio Graphical User Interface takes in charge the generation of GIS (JSON)

and mesh files, in LOD-0 and LOD-1 representations. This is done by using

open databases on the web, such as OpenStreetMap [16], which allow including

more realistic factors such as the terrain topography and the surrounding

vegetation. The Ktirio-GUI is built using the QT framework and C++, and

supports multi-threading. It not only handles physical components, but also

requests and processes weather information for the selected zones, and creates

different occupancy scenarios depending on the different building types.

• Building Model definition: Using the Modelica [17] language, physical systems

are modelled. The models are then translated to C++ applications using the

Functional Mock-up interface [18] (FMI).

• City Energy Simulator: A C++ library designed to simulate a city energy model,

based on the Feel++ [19] framework. The simulation is parameterized by GIS

data, different LOD meshes, building models, occupancy scenarios, and

weather conditions. This application is parallelized on CPU nodes based on a

distributed approach using MPI.

 D3.2 – Scalability, Optimization and Co-Design Activities

Document name: D3.2 – Scalability, Optimization and Co-Design Activities Page: 38 of 75

Reference: D3.2 Dissemination: PU Version: 1.0 Status: Final

To guarantee and automate the simulation execution on different HPC systems, the

UB pilot takes advantage of containerization, using Docker [20] and Apptainer [21].

This way, the UB programming environment is reusable at any time and is independent

of the underlying machine, ensuring easy deployment and reproducible results.

In the previous deliverable (D3.1), a scalability study of Ktirio-UB was performed by

deploying the pilot’s pipeline using 1-32 nodes (with 128 processes per node), which

showed that the simulation component of the workflow scaled almost linearly but the

total execution time did not scale and performance degraded when increasing compute

nodes. This degradation was caused by a bottleneck concerning the post-processing

stage of the pipeline. The source of this problem was found to be multiple files being

written in parallel on the shared file system. Specifically, it was identified that opening

and closing output files was occupying most of the pipeline’s total execution time and

did not scale.

3.3.1 Pilot progress and updates

UB – Code and pipeline changes

Multiple features were implemented since D3.1 in the workflow in order to improve the

accuracy of the city energy simulations. These will be presented at length in deliverable

D5.7, since they are not optimizations targeting performance or scalability. A brief

description of these features is the following:

• The computation of shading masks, which is important for accurately modelling

the impact of solar radiation on building surfaces.

• The addition of vegetation objects in the neighbourhood’s or city’s geometry,

which has a significant impact on the energy consumption of buildings along

with solar masking.

• The implementation of a heating control loop for each building supporting boilers

and heat pumps. Previously, UB supported only ideal heat systems.

• The addition of a post-processing step that aggregates and exports only the

simulation outputs of interest for each experiment. This feature is very vital in

reducing the computational cost of I/O operations for simulations where the

complete and detailed simulation results dataset is not needed.

• The introduction of more precise timers in order to measure the performance of

more fine-grained sections of code.

UB – Profiling, bottlenecks and code/algorithm improvements after D3.1

After D3.1, in order to analyse and optimize the performance of the UB code, profiling

was conducted. The initial attempt was with Eztrace from NumPEx, the French

 D3.2 – Scalability, Optimization and Co-Design Activities

Document name: D3.2 – Scalability, Optimization and Co-Design Activities Page: 39 of 75

Reference: D3.2 Dissemination: PU Version: 1.0 Status: Final

exascale initiative, which was chosen for its ease of integration. Eztrace uses

LD_PRELOAD, meaning it requires no recompilation, which was essential given the

complexity of the UB build pipeline. However, the profiling attempt was unsuccessful

due to several bugs resulting in traces not being visualized correctly. These issues

have been reported to the Eztrace development team, and are still under investigation.

Since UB’s build pipeline complexity is very high, alternative tools like Score-P which

require re-compilation could not be easily integrated to the existing setup. To address

this, the UB pilot has introduced a new packaging system known as Spack into their

workflow which will ultimately enable Score-P profiling support. Although Score-P is

not yet available for integration at the time of D3.2, its inclusion will provide a more

robust profiling option for future iterations.

Even without profiling, the primary bottleneck for the UB pipeline was already identified

in D3.1; post-processing did not scale due to the high cost of writing HDF5 files across

a large number of cores. To address this, the workflow was modified to generate

simulation reports only for relevant information, defined during simulation execution,

which reduced the actual volume of the output size. reducing communication overhead

and enabling more targeted performance analysis. Then, the pre-processing stage was

restructured for distributed partitioning, dividing the input dataset among MPI ranks to

minimize memory constraints and improve scalability.

3.3.2 Performance analysis

UB – System configuration

As mentioned previously, UB uses containers to ensure that the programming

environment is reusable and independent of the underlying machine. UB executions

were performed on 4 different EuroHPC JU systems: Discoverer, Vega, Karolina and

Meluxina for which the programming and runtime environments are detailed on Table

14. The UB pilot performance measurements are based on the feelpp.benchmarking

framework, which eases the benchmarking process of any application on HPC systems

through the generation of comprehensive reports.

Table 14. Programming & runtime environment for UB benchmarks

 Discoverer Vega Karolina Meluxina

 D3.2 – Scalability, Optimization and Co-Design Activities

Document name: D3.2 – Scalability, Optimization and Co-Design Activities Page: 40 of 75

Reference: D3.2 Dissemination: PU Version: 1.0 Status: Final

Compiler (container) Clang 14

Parallel framework
OpenMPI 4.1.6 OpenMPI 4.1.5

OpenMPI
4.1.4

OpenMPI

5.0.3

Libraries

Apptainer
SingularityPRO

version 3.7-4.el8

SingularityPRO
version 4.1.6-

1.el8
1.3.6 1.3.6

Python 3.9.7 3.10.8 3.10.4 3.11.10

UB – Benchmarking configurations

Previously, the scalability of the UB pilot’s workflow was evaluated on Discoverer,

Karolina and MeluXina, for two different area sizes of a square centred in Strasbourg.

The datasets contained approximately 6000 and 17000 buildings for square side sizes

of 2km and 4km respectively. As multiple features were included since deliverable

D3.1, resulting in major modelling changes, new benchmarking scenarios are

considered for D3.2 in order to evaluate the new workflow’s strong and weak scaling.

Table 15 describes the different benchmark scenarios and their parameters. All

benchmarks are performed using a LOD0 mesh and a 1-day timespan during winter,

corresponding to January 1st, 2024.

Table 15. New benchmarking scenarios for UB

 Location
Heating
systems

Quadrature
Order

LOD Period Radius

nodes

S1 Paris Ideal 3 0 1 day, winter 1 – 6 km 2 – 50

S2 Paris-Berlin Ideal 3 0 1 day, winter 5 km 2 – 50

S3 Paris Ideal 0 – 5 0 1 day, winter 3 km 2 – 10

More specifically, three different scenarios were used:

• S1: The first scenario focuses on reviewing the pipeline’s spatial and

computational scaling. It does so by varying the radius of the circle centred on

Paris that defines the mesh, from 1km to 6km with a 1km step, as well as the

number of compute nodes used for the simulation, using 2, 3, 4, 5, 6, 7, 8, 9,

10, 20, 30, 40 and 50 nodes, with 128 tasks per node. Some large cases

required more memory than the memory allocated, therefore, the number of

tasks per node was reduced.

• S2: The second scenario’s objective is to study the impact of the building density

of a city in energy simulations, specifically concerning solar shading. For this, a

 D3.2 – Scalability, Optimization and Co-Design Activities

Document name: D3.2 – Scalability, Optimization and Co-Design Activities Page: 41 of 75

Reference: D3.2 Dissemination: PU Version: 1.0 Status: Final

3km radius circle centred on Paris and on Berlin will be considered. The

computational resources used will vary from 2 nodes to 50, as in the previous

scenario.

• S3: The third scenario assesses the impact of the accuracy of the solar mask

evaluation. The quadrature order parameter controls the number of rays used

in the ray tracing algorithm: the greater the order of quadrature, the greater the

number of rays. The performance of the solar masks and building simulation

components will be analysed depending on the quadrature order, for the 3km

mesh of Paris, using 2 - 10 nodes and considering a 1-day period.

Some relevant statistics for the input meshes for the different radius values are shown

in Table 16 and Table 17.

Table 16. Characteristics for the Paris dataset

Paris Nb buildings Nb vertices (LOD0) Nb triangles (LOD0)

1km 4 770 185 341 323 140

2km 17 455 734 992 1 287 744

3km 36 339 192 5476 3 394 036

4km 65 390 3 940 001 6 968 494

5km 102 506 5 856 068 10 337 432

6km 150 292 7 524 817 13 243 994

Table 17. Characteristics for the Berlin dataset

Berlin Nb buildings Nb vertices (LOD0) Nb triangles (LOD0)

1km 3 842 128 465 223 400

2km 8 186 471 101 830 828

3km 17 505 1 103 919 1 949 136

4km 32 128 1 959 435 3 466 526

5km 51 007 3 165 351 5 604 338

6km 77 046 4 382 797 7 735 780

UB – Results & analysis

In order to accurately compare the application’s performance to D3.1, the solar masks,

aggregated output report and visualization export components have been deactivated.

Consequently, the pre-processing stage mainly consists of reading partitioned city

meshes, and parsing files related to weather conditions and occupancy scenarios. The

simulation stage only considers the building simulation component, and the post-

processing stage represents only the export of output quantities in parallel using the

HDF5 format.

 D3.2 – Scalability, Optimization and Co-Design Activities

Document name: D3.2 – Scalability, Optimization and Co-Design Activities Page: 42 of 75

Reference: D3.2 Dissemination: PU Version: 1.0 Status: Final

Figure 17 shows the performance analysis for the S1 scenario for these adjustments,

using 2-50 nodes and 128 tasks per node, for values of the input city mesh radius

ranging from 1km to 6km. The figure depicts the performance breakdown for pre-

processing, simulation and post-processing (left) and the speedup achieved (right) on

each EuroHPC JU machine for the total execution (end-to-end) and the simulation

component of the pipeline (simulation).

 D3.2 – Scalability, Optimization and Co-Design Activities

Document name: D3.2 – Scalability, Optimization and Co-Design Activities Page: 43 of 75

Reference: D3.2 Dissemination: PU Version: 1.0 Status: Final

Figure 17. UB-Ktirio performance results for the Paris scenario, with only the D3.1 modelling
components active for 1 - 50 nodes

First, it is notable that in general the speedup improves with the problem’s size, e.g.

the city radius. For all city radius values the simulation part of the workflow takes the

most time on low numbers of nodes. However, as node count increases, the execution

time of the simulation starts being dominated by the pre-processing and post-

processing steps.

In contrast to D3.1, the simulation stage has a slightly lower speedup, which is

attributed to more advanced building models being used, while the partitioning

procedure does not yet account for this added complexity. More specifically, while

buildings are assumed to have the same weight in the load balancing, the current urban

building model has been improved with various characteristics and differences

depending on the building type, like the number of floors.

On the other hand, the end-to-end pipeline now shows some scaling with the

computation resources, while in D3.1 it actually resulted in slowdowns. The most

important factor for this is that computation time needed for exporting HDF5 outputs

has significantly been reduced, leading to an important improvement in the total

pipeline execution.

Next, to assess the performance of the updated code, all newly implemented features

of UB were enabled, allowing the analysis of the solar masks component, as well as

the aggregation report and visualization export.

Figure 18 presents the performance achieved for the S1 scenario, i.e., when using

increasing mesh sizes. It is evident that enabling the new features leads to a significant

 D3.2 – Scalability, Optimization and Co-Design Activities

Document name: D3.2 – Scalability, Optimization and Co-Design Activities Page: 44 of 75

Reference: D3.2 Dissemination: PU Version: 1.0 Status: Final

impact on the performance. Improved scalability is traded off in favour of incorporating

more realistic components and thus obtaining more accurate results.

It can be seen that there exists a case (3km, 10 nodes) where the pre-processing stage

takes longer than usual for Discoverer, which can only be explained by stability issues

with Discoverer’s file system. Additionally, some benchmarks on Vega were

unsuccessful, either because of very long queue times or due to connection issues

concerning SLURM. In general, executions on Karolina exhibited better performance

and scaling compared to the other systems.

 D3.2 – Scalability, Optimization and Co-Design Activities

Document name: D3.2 – Scalability, Optimization and Co-Design Activities Page: 45 of 75

Reference: D3.2 Dissemination: PU Version: 1.0 Status: Final

Figure 18. UB-Ktirio performance results for the Paris scenario, with all modelling components
active for 1 - 50 nodes

The benchmarking has provided a detailed insight into the efficiency and scalability of

UB’s components. More specifically, both areas of success and others requiring further

optimization have been identified:

• Solar Mask Evaluation: The evaluation of the solar mask shows significant

scaling issues. When a large number of MPI tasks is employed, the

computational time increases dramatically. This performance degradation was

anticipated given that the current implementation, while robust, is not fully

optimized for MPI parallelism. To address this, work has begun on incorporating

spatial partitioning, which will localize solar mask intersections within

designated processor groups. This approach is expected to reduce

communication overhead and improve scalability.

• Building Simulation: The building simulation component exhibits near-perfect

scaling. Task distribution across nodes is well-balanced, and the simulation

 D3.2 – Scalability, Optimization and Co-Design Activities

Document name: D3.2 – Scalability, Optimization and Co-Design Activities Page: 46 of 75

Reference: D3.2 Dissemination: PU Version: 1.0 Status: Final

performs efficiently under parallel execution. This confirms that the underlying

model and its MPI task management are functioning as intended.

• Post-Processing Steps:

- Export Outputs (HDF5): The export of simulation outputs in HDF5 format

consumes minimal time, indicating that this process does not significantly

impact the overall execution.

- Report Generation: Report generation maintains good scaling behaviour

even as computational resources increase.

- Export Visualization (Ensight): In contrast, the export of large visualization

files in Ensight format shows a marked increase in execution time with the

number of nodes used. This suggests that parallel access to shared file

systems is a bottleneck. Alternative strategies, such as caching intermediate

results or leveraging local disk storage, are being considered to alleviate this

issue.

Figure 19. UB-Ktirio performance results for the Paris and Berlin-Paris scenarios, with all
modelling components active for 1 - 50 nodes

Figure 19 depicts the results for the S2 scenario, i.e., for two considerably large

European cities (Paris and Berlin) that have significantly different densities concerning

building distribution. Even if the relative time taken by the simulation varies between

cities (caused by the difference in the number of buildings), the speedup is almost

identical between Paris and Berlin. This leads to the conclusion that the density of a

city has no major influence on the application’s scaling.

 D3.2 – Scalability, Optimization and Co-Design Activities

Document name: D3.2 – Scalability, Optimization and Co-Design Activities Page: 47 of 75

Reference: D3.2 Dissemination: PU Version: 1.0 Status: Final

Neither case achieves linear scaling for the simulation stage, implying that UB

pipeline’s scaling might be independent of the input dataset. On the other hand, due

to the higher number of buildings present in the Paris dataset, post-processing takes

significantly more time than Berlin with respect to the other phases of the workflow.

Finally, by leveraging pre-computed mesh partitions, the pre-processing stage seems

to be also independent of the input dataset. The time percentage required to load input

remains almost constant.

Finally, the third scenario (S3) assesses the impact of quadrature order on

performance, taking into account the maximum computation time of all iterations, the

total computation time and the relative performance of the solar masks component. All

experiments were performed on the Discoverer and Karolina clusters, for 2-10 nodes,

on the 3km - Paris mesh, for the quadrature order taking values from 0 to 5.

Figure 20 shows the maximum computation time over all iteration and the total

execution time that the solar masks component took, running on 8 nodes of the

Discoverer cluster. It can be deduced from the figure that the number of quadrature

points has a significant impact on the computation time. Considering a quadrature

order of 3 instead of 4 reduces the solar mask computation time by half. A more in-

depth analysis should be done on the accuracy of solar shading coefficients to examine

if a high order is necessary.

Finally, Figure 21 depicts the relative performance and speedup of the simulation

component (solar masks and building energy simulation) for the given quadrature

orders and for 2 to 10 nodes, on the 3km - Paris dataset. It is evident that the simulation

component scales better for lower quadrature orders, notably when executing on a

larger number of nodes. In order to profit from the accuracy of a higher number of

quadrature points, mesh partitioning should be revisited to improve the scaling of the

solar masks component, along with optimizing MPI communications.

Figure 20. The number of quadrature points and their effect on execution time for the solar
mask component

 D3.2 – Scalability, Optimization and Co-Design Activities

Document name: D3.2 – Scalability, Optimization and Co-Design Activities Page: 48 of 75

Reference: D3.2 Dissemination: PU Version: 1.0 Status: Final

Figure 21. Relative performance and speedup of UB simulation by quadrature order

UB - Summary and next steps

Concluding, the UB pilot has redesigned its codebase, adding new more complex

model components, and extended benchmarking across multiple EuroHPC JU

systems. End-to-end scalability has improved considerably for the model workflow

components used in D3.1, largely due to reduced output export time in the post-

processing stage. On the other hand, the simulation speedup was slightly lower than

in previous results, which was attributed to increased model complexity that is not yet

fully accounted for in the load balancing strategy. Regarding new model components

introduced after D3.1, the solar mask evaluation and visualization export stages

emerged as new bottlenecks while the pre-processing performance was largely stable

and independent of the input dataset size.

Moving forward, optimisation will focus on improving the MPI parallelism of the solar

mask component, using spatial partitioning to reduce communication overhead. The

Ensight-based visualization export will also be reviewed, with strategies such as

caching intermediate data or using local storage to reduce I/O contention. Further

analysis will evaluate the trade-offs between quadrature order and solar shading

coefficient accuracy, aiming to achieve a balance between performance and model

fidelity. These improvements will be integrated in the next development phase to

support more scalable and robust large-scale UB simulations.

3.4 Wildfires (WF)

The Wildfires (WF) pilot focuses on simulating fire propagation and its interaction with

the atmosphere across different spatial scales. Within the pilot, two primary use cases

are considered, based on the resolution and the characteristics of the simulated

scenarios: the landscape level and the settlement (urbanization) level.

• Landscape level: The objective at this level is to simulate wildfire progression

and its coupled interactions with atmospheric dynamics. This includes modelling

the release of energy, wind field disturbances, pyro-convective phenomena, and

the emission and dispersion of smoke. The modelling approach combines the

Weather Research and Forecasting model [22] (WRF) with SFIRE [23], a semi-

 D3.2 – Scalability, Optimization and Co-Design Activities

Document name: D3.2 – Scalability, Optimization and Co-Design Activities Page: 49 of 75

Reference: D3.2 Dissemination: PU Version: 1.0 Status: Final

empirical fire behaviour module tailored for coupled atmosphere–fire

simulations. Benchmarking efforts reported in D3.1 were focused exclusively on

this level, where a variety of different WRF pipelines were implemented and

benchmarked on the VEGA EuroHPC system to identify the initial bottlenecks

of the WRF-SFIRE code.

• Settlement level: At the finer urbanization scale, the pilot’s purpose is to simulate

flame-scale fire dynamics over built environments and complex terrains. This

includes local atmospheric interactions, obstruction effects from buildings and

vegetation, and the modelling of smoke and spark dispersion. The simulations

leverage high-fidelity CFD solvers such as OpenFOAM and domain-specific fire

modules. The OpenFOAM code for this level is currently under development

and integration, so benchmarking is expected to be performed in the next part

of the project.

3.4.1 Pilot progress and updates

For Deliverable D3.1, the WF pilot performed initial benchmarking activities focusing

on landscape-scale wildfire simulations using the WRF-SFIRE model. These efforts

provided early validation of the pilot’s functionality on EuroHPC JU systems and

highlighted several limitations. Firstly, the deployment process of WRF and WPS was

hindered by system-specific software dependencies, making it difficult to port the

pipeline across different HPC systems. Next, benchmarking was constrained to a set

of baseline scenarios with limited scalability, focusing mainly on pipeline correctness

and viability, not scalability. Consequently, the overall pipeline exhibited suboptimal

scalability due to its complexity, decomposition limitations caused by the problem

resolution, and I/O-heavy pre-processing/data loading phases. Consequently, in this

deliverable the focus for the WF pilot was a) portability and b) evaluating, profiling and

improving scalability in more complex WRF execution pipelines.

Table 18. Details of the Cadalso simulation case

Location Domains
Horiz.
Res.

Comp. Grid
Start
point

Duration

Cadalso 4

5.4 km 640 x 642

28/06/2019
14:00 UTC

4 hours
1.08 km 716 x 676

216 m 826 x 786

72 m 892 x 889

Portability improvements

As part of the project’s co-design efforts, the WF pilot is collaborating with the

EPICURE project [24] to ease and standardise the installation and deployment of the

 D3.2 – Scalability, Optimization and Co-Design Activities

Document name: D3.2 – Scalability, Optimization and Co-Design Activities Page: 50 of 75

Reference: D3.2 Dissemination: PU Version: 1.0 Status: Final

WRF-SFIRE modelling framework across multiple EuroHPC JU systems. The goal of

this collaboration is to overcome the reproducibility and portability challenges

highlighted in D3.1 by developing EasyBuild recipes and installation procedures for

each HPC system. To this end, EPICURE has allocated dedicated personnel for each

target platform, responsible for developing and validating installation workflows, which

are subsequently tested by MTG in production environments.

As of now, the progress is as follows:

• LUMI: An EasyBuild recipe for WRF-SFIRE and WPS has been created and

tested successfully.

• Discoverer: An installation procedure for WRF-SFIRE has been created and

successfully tested. WPS installation is still pending.

• Vega: An EasyBuild recipe is currently under development and being tested.

• Meluxina: An EasyBuild recipe is currently under development

• Karolina: An EasyBuild recipe is currently under development.

• Mare-Nostrum: An EasyBuild recipe is currently under development and testing

has begun.

New codes and pipeline changes

To explore scalability in a new ‘larger’ scenario with higher available parallel work, the

WF pilot has expanded its technical scope to include higher-resolution simulations at

the landscape level. To that end, a new WRF-SFIRE simulation was configured for the

wildfire event that began on 28/06/2019 at 14:00 UTC near Cadalso de los Vidrios in

Comunidad de Madrid. This case introduced a 72-meter horizontal resolution in the

innermost domain, representing one of the highest-resolution wildfire simulations

conducted within the WF pilot to date. Its configuration details are presented in Table

18. The simulation ran for a total of 4 hours, initialized at ignition time. Initial and

boundary conditions were sourced from the ERA5 [25] reanalysis dataset at a

resolution of 0.25°, while the digital elevation model and fuel model map were

generated using LIDAR-derived raster layers provided by the National Geographic

Institute.

The forest fuel classification followed the Anderson (1982) scheme, consistent with

BEHAVE[26] modelling standards, and was processed to a 25-meter spatial resolution.

Due to differences in grid structures between domains, the ndown.exe [27] utility was

required for domain coupling between d02 and d03. The outer domains were executed

on 32 nodes (128 cores per node), while the finer domains initially used ~40 nodes

with identical core configurations to accommodate computational load and memory

demands.

 D3.2 – Scalability, Optimization and Co-Design Activities

Document name: D3.2 – Scalability, Optimization and Co-Design Activities Page: 51 of 75

Reference: D3.2 Dissemination: PU Version: 1.0 Status: Final

3.4.2 Performance analysis

D3.1 assessed the scalability of the WRF-based workflow (WF) for two scenarios and

across different node configurations in VEGA in an attempt to identify its key

performance limitations. The larger scenario (‘2k_test’, henceforth referred to as

‘200m-Robledo’) employed there revealed that while speedup improved up to 10

nodes, it degraded beyond that point due to pre-processing and intermediate data

handling becoming increasingly dominant as computational time decreases.

In this deliverable a different approach is used. First of all, simulation is redefined to

denote only the final WRF stage instead of all the WRF stages and the Real stage as

in D3.1. Second, all pipeline stages are analysed in the breakdowns plots, to identify

specific bottlenecks for each one of them. The node counts displayed in all such plots

refer to the final WRF stage, while preceding stages may use fewer nodes.

Table 19. Programming & runtime environment for WF-WRF benchmarks

 LUMI Karolina Leonardo

Compiler GCC-13.2.0 GCC-13.2.0 GCC-12.2.0

Parallel framework MPICH v8.1.29 Open MPI v4.1.6

Libraries

zlib 1.3.1 1.2.13 1.3

cuRL - 8.3.0 8.4.0

HDF5 1.12.2 1.14 1.14

libpng 1.6.40 1.2.50 1.2.50

jasper 4.0.0 1.900.1 1.900.1

NetCDF-C netcdf-hdf5parallel v4.9.0.11 4.9.2 4.9.2

NetCDF-FORTRAN netcdf-hdf5parallel v4.9.0.11 4.6.0 4.6.0

WRF-SFIRE 4.4 4.4 4.4

WPS 4.4 4.4 4.4

WF – System configuration

Three EuroHPC JU systems have been used for WF’s scalability analysis in addition

to Vega used in D3.1: LUMI, Karolina, and Leonardo. The programming and runtime

environments for WRF and WPS installation on each system are detailed in Table 19.

WF – Results & Analysis

First, we compare the performance of WF reported in D3.1 on Vega (AMD-based

system) with the performance achieved for Leonardo (Intel-based system) for the same

200m-Robledo scenario. Besides comparing different CPU vendors, we also employ

Leonardo as our new baseline for scalability for two reasons: i) It is a more recent

 D3.2 – Scalability, Optimization and Co-Design Activities

Document name: D3.2 – Scalability, Optimization and Co-Design Activities Page: 52 of 75

Reference: D3.2 Dissemination: PU Version: 1.0 Status: Final

system, and ii) it allowed the deployment of the pilot without the technical issues that

we experienced before on Vega. Figure 22 depicts the scalability achieved on

Leonardo and LUMI. It is evident, that while Leonardo exhibits improved scalability

compared to VEGA, speedup still diminishes beyond 16 nodes.

Figure 23 presents the detailed execution breakdown per stage for the 200m-Robledo

pipeline on Leonardo, allowing the identification of two possible causes for this

behaviour: i) The last WRF stage does not scale after ~16 nodes, and ii) the remaining

pipeline stages do not scale at all and therefore quickly become a bottleneck.

Figure 22. WF per node speedup on VEGA and LUMI for the 200m-Robledo scenario

 D3.2 – Scalability, Optimization and Co-Design Activities

Document name: D3.2 – Scalability, Optimization and Co-Design Activities Page: 53 of 75

Reference: D3.2 Dissemination: PU Version: 1.0 Status: Final

Figure 23. WF execution time breakdown per stage for 200m-Robledo in Leonardo

Figure 24. WF's Metgrid stage tracing for the 200m-Robledo scenario

The former is problem-specific, as the maximum scalability depends on the WRF

domain decomposition, and for this pipeline does not enable the utilisation of more

computing resources (nodes). The latter however constitutes a critical problem, as

even for a more scalable WRF domain/problem, the rest of the stages will limit the

performance as defined by Amdal’s law. Hence, in order to address this issue and

detect potential solutions, the pipeline components were profiled and traced with

Score-P and visualized with Vampir [28], leading to the following observations:

As indicated in

• Figure 23, the Metgrid stage has a significant impact on the total execution

time, accounting for nearly 20% of the end-to-end execution duration when

WRF runs on 32 nodes. We note that this stage executes on a single node with

25 processes, exhibiting extremely low parallel efficiency (0.06). Figure 24

groups Metgrid processes by their communication/computation patterns,

revealing that Metgrid is heavily communication-bound, with MPI_Send (mostly)

and MPI_Broadcast comprising over 90% of total time. We can also observe

 D3.2 – Scalability, Optimization and Co-Design Activities

Document name: D3.2 – Scalability, Optimization and Co-Design Activities Page: 54 of 75

Reference: D3.2 Dissemination: PU Version: 1.0 Status: Final

that some messages have very high latency. With further analysis, we attribute

this to the exchange of many very small messages during execution.

Consequently, this problem is caused by the Metgrid algorithm, which was not

designed to be highly parallel and, therefore, scalable.

Figure 25. WF's Real stage tracing for the 200m-Robledo scenario

• The Real stage executes on 1 node with 112 processes and takes around 5%

of the end-to-end execution time when WRF runs on 32 nodes. As shown in

Figure 25, it suffers from imbalance, with process 0 performing some

computation and all the other processes being dominated by MPI

communication. MPI_Scatterv and MPI_Broadcast account for over 90% of

execution time, resulting in an extremely low parallel efficiency (0.01). As a

result, scalability is inherently constrained, and increasing process/node count

does not improve performance.

 D3.2 – Scalability, Optimization and Co-Design Activities

Document name: D3.2 – Scalability, Optimization and Co-Design Activities Page: 55 of 75

Reference: D3.2 Dissemination: PU Version: 1.0 Status: Final

Figure 26. WRF_d01_d02_d03 stage tracing for the 200m-Robledo scenario

• The WRF_d01_d02 stage runs on 8 nodes (896 processes) and takes around

10% of the end-to-end execution time when WRF runs on 32 nodes. This stage

is similar to the last WRF stage but operates on a smaller grid. It involves both

computation and collective communication and has an estimated parallel

efficiency of 0.33. Figure 26 outlines the process timeline and shows low

computational imbalance, with 50% of execution time spent on MPI_Bcast

collective communication between computation phases and 15% blocked by

MPI_Wait and other dependencies.

Figure 27. WF's Ndown stage tracing for the 200m-Robledo scenario

• The Ndown stage executes on 8 nodes and takes less than 5% of the end-to-

end execution time when WRF runs on 32 nodes. As depicted in Figure 27,

 D3.2 – Scalability, Optimization and Co-Design Activities

Document name: D3.2 – Scalability, Optimization and Co-Design Activities Page: 56 of 75

Reference: D3.2 Dissemination: PU Version: 1.0 Status: Final

25% of Ndown’s time is spent on collective communication (MPI_Bcast), 5% on

computation, and 70% in MPI management (MPI_Init), with processes spending

10–75% of their total time in MPI initialization and minimal computation, leading

to Ndown exhibiting extremely low parallel efficiency (0.01).

• The final WRF stage accounts for 60–80% of total execution time while utilizing

~90% of total resources. It follows the same communication/computation

pattern with the previous WRF stage but uses a larger decomposition grid,

improving parallel work and therefore, scalability. It starts with a parallel

efficiency of 0.78 at 8 nodes, which declines sharply as node count increases,

dropping to ~0.3 at 32 nodes.

Summarizing, the WRF stages consume most of the execution time and resources.

While they scale much better than the other stages, communication remains a limiting

factor and scalability depends on the domain decomposition which defines the parallel

work and the communication-to-computation ratio. But, even with perfect WRF scaling,

the maximum achievable end-to-end speedup for 200m-Robledo would be ~40×,

constrained by the rest stages that do not scale, with Metgrid being the main

bottleneck.

Based on the profiling and analysis of the WRF 200m-Robledo pipeline, MTG is

exploring hybrid implementation of WRF-SFIRE using MPI and OpenMP (previously

only with MPI). This process is ongoing, with a hybrid version successfully compiled

and validated with small-scale configurations on the Vega system, but with runtime

errors appearing in larger simulations (when exceeding 900 grid points). This issue

has been reported to the Vega support team and EPICURE and is currently under

investigation. At the same time, EPICURE is also testing hybrid implementations on

LUMI which will also utilize custom vectorisation optimizations (originally developed for

Discoverer). Once hybrid MPI+OpenMP WRF passes the testing phrase, EPICURE

has advised fine-tuning task placement, OpenMP usage across different subprograms,

and usage of compilation flags. For example, initial results showed that Metgrid

performed better when configured to use two OpenMP threads and half of the MPI

tasks instead of the default numbers.

Table 20. Details of new WF Cadalso scenarios

D01
(km)

D02
(km)

D03
(km)

D04
(m)

Number of points per domain

e_we e_sn

200m_
Cadalso

9 3 1 200
D01=345 D02=688
D03=676 D04=846

D01=249 D02=490
D03=484 D04=786

72m_
Cadalso

5.4 1.08 0.216 72
D01=640 D02=716
D03=826 D04=892

D01=642 D02=676
D03=786 D04=889

 D3.2 – Scalability, Optimization and Co-Design Activities

Document name: D3.2 – Scalability, Optimization and Co-Design Activities Page: 57 of 75

Reference: D3.2 Dissemination: PU Version: 1.0 Status: Final

In addition to the actual scalability bottlenecks of the WF code explored above, the

previously benchmarked pipelines were also constrained by low maximum available

parallelism due to not being designed for HPC execution (prior to this project). To that

end, we consider two more fitting WRF scenarios/pipelines for further scalability

analysis, using a new “Cadalso” dataset and with the domain characteristics described

in Table 20. These new tests are similar to Robledo-200m, but after the first four pre-

processing stages which remain the same, they decompose domains differently and

use different resolutions. More specifically:

• For the 200m_Cadalso:

- WRF is run for D01, D02 and D03.

- Ndown is used to remap the output of D03 to input D04.

- WRF is run for D04.

• For the 72m_Cadalso:

- WRF is run for D01 and D02.

- Ndown is used to remap the output of D02 to input D03.

- WRF is run for D03 and D04.

The 200m_Cadalso test was evaluated across all three new systems: LUMI (using 4 –

64 nodes), Karolina (using 1–128 nodes), and Leonardo (using 1–128 nodes). On the

other hand, the 72m_Cadalso test was ran only on the Karolina (using 2 – 64 nodes)

due to the limited resources of the EuroHPC JU benchmarking access scheme.

Figure 28. WF per-node speedup for the 200m_Cadalso scenario

 D3.2 – Scalability, Optimization and Co-Design Activities

Document name: D3.2 – Scalability, Optimization and Co-Design Activities Page: 58 of 75

Reference: D3.2 Dissemination: PU Version: 1.0 Status: Final

Figure 29. WF per-node speedup for the 72m_Cadalso scenario

Figure 27 and Figure 29 present the achieved speedup for both the end-to-end

execution and the final WRF simulation stage. Both tests demonstrate superior

scalability to 200m_Robledo, due to the larger amount of computation in the last WRF

part. The simulation of the 200m_Cadalso scenario scales well up to 8 nodes (~6x

speedup) for all three systems and then shows a minor performance gain until 64

nodes, albeit at a much lower scaling rate (~11x speedup). However, overall scalability

remains limited for end-to-end execution due to the increasing overhead of the other

stages, achieving a maximum end-to-end speedup of 8.95x on LUMI (lower on the

other systems). On the other hand, the 72m_Cadalso scenario exhibits higher

scalability achieving almost double speedup for in 64 nodes (~23x) compared to

200m_Cadalso due to the further increased parallel work because of the higher

resolution. Finally, its end-to-end speedup follows a similar trend (~16x for 64 nodes)

but still becomes visibly constrained by the other stages after ~8 nodes.

 D3.2 – Scalability, Optimization and Co-Design Activities

Document name: D3.2 – Scalability, Optimization and Co-Design Activities Page: 59 of 75

Reference: D3.2 Dissemination: PU Version: 1.0 Status: Final

Figure 30. WF's execution time breakdown per stage for the 200m_Cadalso scenario

Figure 31. WF's execution time breakdown per stage for the 72m_Cadalso scenario

These observations are confirmed by the execution time breakdown depicted in Figure

30 and

Figure 31 for the 200m_Cadalso and 72m_Cadalso scenario respectively. As shown

in Figure 30, Metgrid and the first WRF stage (D01, D02, D03 computation) constitute

the primary bottlenecks similarly to the previously discussed 200m_Robledo scenario.

More specifically, the simulation dominates for ≤16 nodes (occupies >50% of total

execution time), but beyond 16 nodes the speedup flattens and pre-processing and

simulation contribute equally (~50%) to the total time.

 D3.2 – Scalability, Optimization and Co-Design Activities

Document name: D3.2 – Scalability, Optimization and Co-Design Activities Page: 60 of 75

Reference: D3.2 Dissemination: PU Version: 1.0 Status: Final

In contrast, the 72m_Cadalso scenario exhibits a different execution profile. As shown

in Figure 29, the final WRF stage still dominates total execution time even for higher

node counts, starting from 95% of total execution time for 1 node and ending up to

~70% for 64 nodes. Additionally, the first WRF stage, comprising in this case only of

two domains (the third has been shifted in the final WRF invocation), now contributes

significantly less to total time. On the other hand, Metgrid still emerges as a bottleneck

at high node counts.

WF - Summary and next steps

Concluding, the WF pilot undertook during the reporting period following D3.1 a series

of corrective actions aimed at improving portability and scalability. In respect to

portability, with support from the EPICURE co-design task, the pilot’s build system and

execution environment were refactored to ease deployment on new EuroHPC

systems, reducing hard dependencies and improving modularity. In respect to

scalability, the benchmarking suite was extended with more diverse and demanding

scenarios that better exercise the scalability of the pipeline and stress the system’s

computational resources. In order to address the previously observed scalability

bottlenecks, in-depth profiling was performed using Score-P and analysed with Vampir

[28]. This analysis provided detailed insights into performance breakdowns across the

pipeline’s stages, highlighting opportunities for parallelism improvements, I/O

restructuring, and load balancing.

The next step for the WF pilot is integrating and evaluating potential WRF scalability

improvements. To that end, WF will evaluate a hybrid MPI+OpenMP WRF-SFIRE

implementation, which is currently under development and early tests on Vega have

shown promising results on small-scale configurations. Additionally, hybrid builds with

vectorisation optimisations for WRF-SFIRE will be tested on LUMI. Once code

correctness is confirmed, the focus will shift to tuning OpenMP settings, task

placement, and compilation options to further improve scalability and performance.

Finally, the WF will focus on the benchmarking, evaluation and optimization of the new

OpenFOAM code currently under development.

3.5 Material Transport in Water (MTW)

The Material Transport in Water (MTW) pilot use-case is designed to simulate the

complex interactions between fluid dynamics, particulate matter and temperature

changes. As rising water temperatures threaten aquatic ecosystems, especially rivers

and oceans, accurate computational models and extreme-scale simulations are critical

to studying climate change and predicting its consequences for aquatic life.

 D3.2 – Scalability, Optimization and Co-Design Activities

Document name: D3.2 – Scalability, Optimization and Co-Design Activities Page: 61 of 75

Reference: D3.2 Dissemination: PU Version: 1.0 Status: Final

To tackle this challenge, MTW leverages the waLBerla [29] [30], a high-performance

multiphysics framework based on the Lattice Boltzmann Method (LBM). LBM allows

for scalable simulations that efficiently handle coupled fluid-thermal dynamics,

essential for studying material transport in water systems.

3.5.1 Pilot code description

FAU officially joined the HiDALGO2 project in M18 (June 2024), i.e., after the

submission of Deliverable D3.1. This late integration required a rapid adaptation of the

existing waLBerla workflows to fully utilize the capabilities of EuroHPC systems

efficiently while maintaining the flexibility needed to model complex environmental

scenarios. Consequently, in this deliverable the MTW pilot focuses on: i) adjusting to

HIDALGO2 methodology, ii) porting existing code to EuroHPC machines, and iii)

establishing an optimization baseline for the project.

MTW – Adjusting to the HIDALGO2 workflow

The benchmarking workflow for the MTW pilot at FAU follows a well-known Research

Data Management (RDM) framework to ensure efficiency and reproducibility in

performance evaluation. It relies on three primary repositories: benchmark-scripts for

execution scripts, benchmark-data for performance data storage, and post-processing

for data analysis and visualization (details about FAU’s RDM can be found in D2.5).

Additionally, to integrate with the HiDALGO2 benchmarking framework a project-

specific repository hid-bench-mtw has been introduced to the workflow.

The current process consists of cloning the benchmark-scripts repository, where

dedicated build scripts for each cluster and application are responsible for software

retrieval and compilation. Then, batch run scripts execute benchmarks using internal

waLBerla timers to collect performance metrics, which are then uploaded to

benchmark-data. Post-processing scripts convert this structured performance data into

CSV format for hid-bench-mtw, ensuring it aligns with HiDALGO2 methodology

requirements. Current transformations can be done effectively without relying on

ReFRAME [31]. Integrating ReFRAME into the MTW pilot has proven to be more

complex than the current MTW workflow requires. As a result, its integration has been

deprioritised in order to maintain consistency and efficiency with established

benchmarking practices. However, considering ReFRAME's automated environment

matching capabilities, a ReFRAME integration into future workflows will be considered,

especially if advanced benchmarking pipelines with increased modularity are required.

MTW – Code optimizations prior to HiDALGO2 entry

The parallelization of the MTW pilot is based on waLBerla, an HPC framework

designed for scalability and portability [32] [33]. The key component driving these

optimizations is lbmpy [34] [35] [36], a code-generation framework that combines the

 D3.2 – Scalability, Optimization and Co-Design Activities

Document name: D3.2 – Scalability, Optimization and Co-Design Activities Page: 62 of 75

Reference: D3.2 Dissemination: PU Version: 1.0 Status: Final

high-level mathematical description of LBM models and efficient, low-level

implementations suited for diverse hardware architectures.

Specific optimizations include:

• Common Sub-expression Elimination (CSE) in order to reduce redundant

computations.

• SIMD Vectorization for CPU-based parallelization (SSE, AVX, AVX512).

• Memory packing and efficient in-place streaming patterns to ensure optimal

use of memory bandwidth (not applied to the MTW pilot yet).

• Hardware-specific code generation that allows automatic adaptation to CPUs

and GPUs.

• Communication overlap/hiding by splitting the problem domain into an inner

and outer layer for every process. This allows the parallel update of the local

inner cells while communication of the outer ones is performed, reducing the

idling time spent while waiting for the massage-based communication to finish

(not applied to the MTW pilot yet).

In this deliverable, the MTW pilot focuses on two main benchmark test cases:

• Fluid Benchmark – Lid-Driven Cavity Flow (henceforth “UniformGrid”): This

benchmark focuses on the well-known lid-driven cavity test case, where shear-

driven flow is induced within a closed square cavity. The simulation is

implemented using LBM, specifically evaluating the performance of D3Q19 and

D3Q27 models with the Single Relaxation Time (SRT) collision scheme. Each

timestep involves fluid updates, boundary condition enforcement, and inter-

processor communication through MPI-based ghost layer exchanges, enabling

scalable parallel performance assessment. The exact benchmarking setup can

be found in Table 22.

• Two-Way Coupled Fluid-Temperature Benchmark – Differentially Heated

Cavity (henceforth “MTW-case”): This test case simulates thermally induced

convection within a fluid domain using a coupled lattice Boltzmann approach. It

combines two LBM models, each applied at every simulation timestep with two-

way interaction: a D3Q19 model with a single relaxation time (SRT) scheme for

fluid dynamics, and a D3Q7 model with a multiple relaxation time (MRT) scheme

for temperature evolution. The simulation involves fluid and temperature field

updates via LBM, appropriate boundary handling to preserve coupling

consistency, and ghost layer communication of particle distribution functions

(PDFs) for both fields. This ensures efficient data exchange across distributed

memory systems, supporting scalable parallel execution. From a pure

computational point of view, the MTW case is the successive execution of two

LB kernels with different boundary conditions and memory array sizes.

 D3.2 – Scalability, Optimization and Co-Design Activities

Document name: D3.2 – Scalability, Optimization and Co-Design Activities Page: 63 of 75

Reference: D3.2 Dissemination: PU Version: 1.0 Status: Final

Therefore, the performance optimizations presented for the pure fluid kernel

should in theory be directly applicable to the MTW showcase. However, as the

mutual coupling of these two properties introduces additional complexity, this

remains an optimistic assumption for now and thorough benchmarking and

validation is required. The exact benchmarking setup can be found in Table 22

and Table 23.

3.5.2 Co-Design Activities

Due to the recent addition of FAU to HIDALGO2, efforts in profiling and optimizing the

pilot for a specific target EuroHPC system have not started yet. Consequently, co-

design activities performed by FAU for the moment are executed on the abstraction

layer of code-generation. The key co-design activities explored in the context of the

HIDALGO2 project are:

• Optimizing memory access patterns for high-bandwidth memory (HBM)

configurations.

• Efficient inter-node communication using waLBerla’s MPI-based

implementation, ensuring scalable distributed simulations.

• GPU offloading with lbmpy- and pystencils [37]-generated computational

kernels, which are specifically optimized for different GPU architectures. The

generated kernels efficiently execute on:

- NVIDIA GPUs via CUDA-generated kernels

- AMD GPUs via HIP-generated kernels

• Testing the performance characteristics of waLBerla for various architectures

on a local FAU test cluster. This led to integrating waLBerla with lbmpy-

generated LBM kernels against different hardware platforms for continuous

optimization [38].

3.5.3 Performance analysis

This section provides a performance evaluation of the MTW showcase through an

investigation of the pure fluid benchmark “UniformGrid” with all of waLBerla's

optimization strategies available as detailed previously and the fluid-concentration-

coupled benchmark “MTW case”. The analysis is based on strong scaling and focuses

on: i) computational speedup for both benchmark applications, and ii) the distribution

of execution time among the various simulation components of the "MTW case", in line

with the HIDALGO2 benchmarking and reporting methodology established in D3.1.

While the waLBerla framework is able to extensively optimize the LBM simulations

present in “UniformGrid”, the LBM model of the transport equation as well as the fluid-

temperature-coupling which are utilized by the “MTW case” remain in an exploratory

 D3.2 – Scalability, Optimization and Co-Design Activities

Document name: D3.2 – Scalability, Optimization and Co-Design Activities Page: 64 of 75

Reference: D3.2 Dissemination: PU Version: 1.0 Status: Final

phase, where fewer optimizations have been implemented to ensure a comprehensive

assessment of workload distribution and correctness.

MTW – System configuration

MTW executions were performed during the reporting period on two EuroHPC

systems, LUMI and MareNostrum5, on both the CPU and GPU partitions. The details

of the programming and runtime environments used for these runs can be found in

Table 21. The compilers were chosen based on their reputation to achieve optimal

performance on target architecture. All reported benchmarks use the most recent

library versions available on the systems.

MTW – Benchmarking configuration

The UniformGrid benchmark was executed on two GPU based and two CPU based

systems with a Lattice model consisting of 19 and 27 PDEs per cell respectively. These

systems represent the different benchmark scenarios that can be found in Table 22.

The in-place AA streaming pattern with collision of single relaxation time are

exemplarily chosen. Each benchmark was set up to fit the problem in the respective

CPU or GPU memory of a single node resulting in given distributions of "Lattice Cells

per Process". Due to the benchmark’s simplicity, the performed number of time-steps

was kept minimal with a pure simulation time of approximately 3 seconds on one node.

The reduced run time during strong scaling was compensated by repeating the

simulation proportionally to the number of utilized nodes and averaging over the

simulation time per run.

Table 21. Programming & runtime environment for MTW benchmarks

 LUMI-C LUMI-G MN5-GPP MN5-ACC

Compiler Cray-clang-
17.0.1

AMD-clang-
17.0.0

Intel-
2021.10.0

NVHPC-
23.11.0

Parallel framework cray-mpich-
8.1.29

cray-mpich-
8.1.29

Openmpi-
4.1.5

Openmpi-
4.1.5

Libraries

waLBerla 6.1 6.1 6.1 6.1

lbmpy 1.3.7 1.3.7 1.3.7 1.3.7

Python3 3.11.7 3.11.7 3.12.1 3.12.1

CUDA - - - 12.2

HIP - 6.0.3 - -

Jinja2 3.1.6 3.1.6 3.1.6 3.1.6

Pybind11 2.13.6 2.13.6 2.13.6 2.13.6

 D3.2 – Scalability, Optimization and Co-Design Activities

Document name: D3.2 – Scalability, Optimization and Co-Design Activities Page: 65 of 75

Reference: D3.2 Dissemination: PU Version: 1.0 Status: Final

Table 22. Benchmarking configuration for the MTW-UnformGrid benchmarks

Scenario Lattice Model
Communication

Hiding
Lattice Cells
per Process

Time-steps

MN5-GPP D3Q27-AA-SRT
simple overlap with

(8, 8, 8)-split
224x224x112 5

LUMI-C D3Q27-AA-SRT
simple overlap with

(8, 8, 8)-split
192x192x160 5

MN5-ACC D3Q19-AA-SRT
simple overlap with

(8, 8, 8)-split
640x640x640 20

LUMI-G D3Q19-AA-SRT
simple overlap with

(8, 8, 8)-split
640x640x640 20

The UniformGrid benchmark utilizes all performance optimizations that are currently

available within waLBerla and lbmpy. This includes architecture-specific optimizations

produced by lbmpy, i.e. vectorization, loop transformations and memory packing, in-

place streaming pattern, etc, and communication-hiding techniques of the waLBerla

MPI module to overlap computation and communication by splitting the process local

domain as specified in the respective column of Table 22. These optimizations enable

the benchmark to maintain a high level of efficiency across multiple nodes.

The configuration data for MTW-case can be found in Table 23. Both the fluid and the

temperature model use a pull streaming pattern instead of a more complex in-place

one. Both cases are expected to have reached a steady state after the number of time

steps specified.

Table 23. Benchmarking configuration for the MTW-case benchmarks

Scenario
Lattice Model

fluid
Lattice Model
temperature

Lattice Cells per
Process

Time-
steps

full_mem D3Q19-pull-SRT D3Q7-pull-MRT 256x512x128 1000

small_mem D3Q19-pull-SRT D3Q7-pull-MRT 128x256x64 1000

MTW – Results & analysis

Initially, strong scaling benchmarks for UniformGrid were carried out on two GPU-

based systems: MareNostrum5-ACC and LUMI-G. First, GPU-focused benchmarking

was conducted on MareNostrum5-ACC, reaching up to 32 nodes (i.e. 128 H100

NVIDIA GPUs) to assess strong scaling for the most recent NVIDIA Hopper

architecture. Then, strong scaling experiments extended up to 512 nodes (2048

MI250x AMD GPUs) in LUMI-G to provide performance insights at extreme scale.

 D3.2 – Scalability, Optimization and Co-Design Activities

Document name: D3.2 – Scalability, Optimization and Co-Design Activities Page: 66 of 75

Reference: D3.2 Dissemination: PU Version: 1.0 Status: Final

Figure 32 shows the strong scaling performance for UniformGrid with walBerla and

lbmpy on the two GPU clusters LUMI-G (blue) and MareNostrum-ACC (green). The

UniformGrid benchmark shows almost linear scaling up to 32 nodes. As the number of

nodes increases, the scaling behaviour becomes logarithmic, which is still an adequate

behaviour for strong scaling, especially on GPUs.

Figure 32. MTW per node speedup for strong scaling investigations of the fully optimized pure
fluid LBM benchmark (UniformGrid) on LUMI-G (AMD) and MareNostrum5-ACC (NVIDIA)

In addition to GPU benchmarks, strong scaling analysis for UniformGrid was also

carried out on two CPU-based systems: MareNostrum5-GPP and LUMI-C. On

MareNostrum5-GPP, tests were performed using up to 64 nodes (~7k Intel Sapphire

Rapid Cores), while on LUMI-C scaling was evaluated up to 512 nodes (~65k AMD

EPYC Cores). Additionally, an attempt was made for running on Deucalion, but

benchmarking was delayed due to MPI compatibility issues and challenges in

achieving reliable cross-platform compilation.

As Figure 33 shows, UniformGrid exhibits near-optimal scalability across the full range

of available nodes both for LUMI-C and MareNostrum-GPP, with two noticeable

anomalies. First, there is a transient drop in scalability observed at 32 nodes on

MareNostrum-GPP. Second, starting at 128 nodes on LUMI-C, the speedup increases

over-proportionally with the number of nodes. We attribute both observations to the

caching effects inherent to each CPU architecture. Furthermore, because CPUs act as

general-purpose computing units, they can deliver robust performance even when

dealing with smaller problem sizes. This behaviour contrasts with that of GPUs, which

are designed for high-throughput computation. As a result, CPUs can manage lower

 D3.2 – Scalability, Optimization and Co-Design Activities

Document name: D3.2 – Scalability, Optimization and Co-Design Activities Page: 67 of 75

Reference: D3.2 Dissemination: PU Version: 1.0 Status: Final

computational loads and communication of smaller data packets more effectively

compared to GPUs. This helps to reduce the impact of latency, which often affects

scalability when deploying large computing resources.

Figure 33. MTW per node speedup for strong scaling investigations of the fully optimized pure
fluid LBM benchmark (UniformGrid) on LUMI-C (AMD) and MareNostrum5-GPP (Intel)

The MTW-case benchmarking focused primarily on LUMI-G, where strong scaling

experiments were conducted using up to 128 nodes (each equipped with four AMD

MI250x GPU modules). Two distinct problems (set up as detailed in Table 23) were

evaluated: a full memory configuration (light blue), in which the problem was sized to

fully occupy the GPU memories of a single node, and a small memory configuration

(dark blue), where the problem size was reduced by a factor of two in each spatial

dimension, resulting in a memory footprint approximately equal to one-eighth of the

total GPU memory per node. The MTW-case was also deployed on Vega, but

prolonged allocation times and resource contention prevented successful execution

within the reporting period.

Figure 34 illustrates the logarithmic speed-up behaviour of the full memory

configuration. The code displays some scalability up to 16 nodes, but after that point

scalability collapses entirely. The small memory configuration follows a comparable

trend but with scalability diminishing faster, which is expected considering that its initial

problem size corresponds to one-eighth of the full memory setup. The poor scalability

behaviour of this showcase can be traced back to exponentially decreasing utilization

of the GPUs. When the number of nodes doubles, each node processes half as much

data, resulting in many small communications between the GPUs, making the

simulation latency-bound and under-utilizing the high GPU memory bandwidth. The

 D3.2 – Scalability, Optimization and Co-Design Activities

Document name: D3.2 – Scalability, Optimization and Co-Design Activities Page: 68 of 75

Reference: D3.2 Dissemination: PU Version: 1.0 Status: Final

same applies to the computational power of the target architecture - the exponentially

decreasing number of lattice cells per node has a direct impact on the number of

threads available per compute unit, limiting the occupancy of the GPUs.

Figure 34. MTW per node speedup for strong scaling investigations of the MTW fluid-
temperature-coupling’s benchmark (MTW-case) on LUMI-G

To gain further insights into the bottlenecks of MTW-case, its execution is split into five

steps:

• Pre-Processing that includes MPI initialization and memory allocation.

• Fluid Communication that includes inter- and intra-node MPI communication.

• Fluid Update that includes the stream-collide-step for approximating the fluids

dynamic properties by solving the Boltzmann Equation, and the boundary

handling.

• Concentration Communication that includes inter- and intra-node MPI

communication.

• Concentration Update that includes the stream-collide-step to solve the

transport equation for temperature as a scalar field using the LBM, and the

boundary handling.

Figure 35 illustrates the percentile breakdown of the MTW-case execution to these

stages, from bottom to top. The dominant influence of bandwidth and latency is

evident; the higher the number of nodes, the lower the influence of the computation of

the lattice cell updates to the point where the simulation just waits for the

communication to finish. As LBM is a memory-bound algorithm, the computation times

are directly proportional to the complexity of the LBM model, which can be seen well

in the single node bar in Figure 35, where the fluid kernels with the Q19 model take

 D3.2 – Scalability, Optimization and Co-Design Activities

Document name: D3.2 – Scalability, Optimization and Co-Design Activities Page: 69 of 75

Reference: D3.2 Dissemination: PU Version: 1.0 Status: Final

about 2.5 times as long as the temperature kernels with the Q7 model. On the other

hand, the runtime impact of pre-processing tends to be constant within strong scaling.

Figure 35. MTW-case benchmark’s execution time breakdown on LUMI-G

MTW – Summary and next steps

Summing up the performance observations for the MTW pilot, while the Lattice

Boltzmann Method demonstrates a significant degree of scalability, problem sizes per

node must be sufficiently large to fully exploit node capabilities - especially on GPU

clusters. In the subsequent deliverable D3.3, this should be further explored via weak

scaling benchmarks and profiling. Furthermore, this analysis will be expanded to

multiple EuroHPC systems, with the objective of validating performance and ensuring

compatibility and efficiency across the entire EuroHPC hardware stack under

production-level workloads. Finally, the exploration of task-level parallelism, such as

ensemble simulations [39], could be regarded as a viable alternative to exclusive data-

parallel methodologies.

 D3.2 – Scalability, Optimization and Co-Design Activities

Document name: D3.2 – Scalability, Optimization and Co-Design Activities Page: 70 of 75

Reference: D3.2 Dissemination: PU Version: 1.0 Status: Final

4 Scalability & Optimisation related KPIs

HiDALGO2 has identified multiple KPIs related to benchmarking and optimisation

activities and is committed to achieve ambitious targets. Table 24 presents the current

status of these KPIs based on the benchmarking activities that have been reported in

Section 3, along with the status reported on the previous deliverable (D3.1). It is evident

that during the reporting period, good progress has been achieved.

Table 24. Status of benchmarking and optimisation related KPIs in M12 (D3.1) and M28

During the reporting period (M13-M28), HiDALGO2 has continued the benchmarking

of its pilots on the HPC infrastructure, employing also the more recently added

EuroHPC JU systems that were unavailable for D3.1. More specifically:

• The RES pilot extended its damages benchmarking activities to the Proxima

and Leonardo systems, with scalability tests performed using up to 8k cores,

doubling the core count reported in D3.1. A new scenario focusing on the

prediction of photovoltaic energy production was introduced and benchmarked

on Leonardo for up to 8k cores. Profiling of the damages workflow confirmed

that communication remains the main bottleneck and future work will explore

communication optimisations, such as communication-computation overlap.

• Benchmarking activities for the UAP pilot covered both UAP-FOAM and UAP-

Xyst components on LUMI, with UAP-FOAM extending tests up to 512 nodes

(64k cores). Scalability remained strong up to 128 nodes, with communication

overhead becoming more significant at larger scales. For UAP-Xyst, three

continuous Galerkin Finite Element solvers were evaluated, with successful

hero runs on LUMI reaching 196k cores for LohCG and RieCG. In addition,

UAP-RedSIM was tested on Karolina, scaling up to 64 CPU nodes (8k cores)

and up to 32 NVIDIA A100 GPUs.

KPI Target M12 M28 Comments

Applications with a
scalability of 50k cores in a
single run

≥ 3 1 3

Scalable runs with more than 50k
cores have already been
achieved by UAP-Xyst, UAP-
FOAM and MTW-walBerla.

Applications with a
scalability of 200k cores in
a single run

≥ 1 0 1
UAP-Xyst scales up to 196k
processes in LUMI-C

Applications with a
scalability of 80k cores in
ensemble runs

≥ 3 0 0
No work has been performed yet
for ensemble runs.

Applications with parallel
efficiency improved by 30%

≥ 3 0 3
The parallel efficiency of WF-
WRF code, UAP-Xyst and UAP-
RedSIM has been improved

 D3.2 – Scalability, Optimization and Co-Design Activities

Document name: D3.2 – Scalability, Optimization and Co-Design Activities Page: 71 of 75

Reference: D3.2 Dissemination: PU Version: 1.0 Status: Final

• The UB pilot underwent a major model redesign and was benchmarked on

Discoverer, Karolina, MeluXina and VEGA, reaching up to 50 nodes (~6k

cores). While scalability improved, issues with pre-processing and post-

processing phases still persist at high node counts. Upcoming work will focus

on file I/O optimisations to address these bottlenecks in the next deliverable.

• The WF pilot was benchmarked for D3.1on VEGA, with allocations of up to 16

nodes. Since then, extensive profiling and performance analysis has been

carried out, revealing several bottlenecks in the pipeline, which are now under

active improvement. The WRF-based pipeline has been extended to utilise 128

nodes (16k cores), with some scaling up to 64 nodes (8k cores). A new

simulation scenario using OpenFOAM has also been tested and validated, and

is expected to be benchmarked in the next phase.

• The MTW pilot joined the project after D3.1 and has adapted to the

benchmarking methodology used across pilots, with ReFRAME integration

underway. Benchmarks were carried out for both the standalone LBM kernel

and the full MTW pipeline, on CPU and GPU architectures. The GPU-based

LBM benchmark scaled effectively up to 2048 AMD MI250x GPUs on LUMI-G

and 128 NVIDIA H100 GPUs on MN5-ACC. CPU-based benchmarks showed

nearly linear scaling, reaching 512 nodes (64k cores) on LUMI-C. The full MTW

workflow was tested on LUMI-G up to 128 nodes; however, scalability was

limited and needs to be further analysed and improved.

In the forthcoming periods of the project, the benchmarking of the pilots will continue

as they advance and are further optimised. The main next steps can be summarised

as follows:

• More profiling and bottleneck analysis: This second deliverable has already

identified a few performance issues for pilot code, especially when scaling in

larger amounts of nodes, using profiling and tracing along with usual

benchmarking.

• Automating deployment: Due to differences between EuroHPC systems in

terms of software dependencies, portability is one of the major issues still faced

by pilots. More general solutions like containerization will be explored in the rest

of the project.

• Extreme scalability: Future benchmarking activities will focus on scaling pilots

to larger node counts and extreme-scale configurations, building on the

progress achieved so far. As node counts increase, communication and I/O

bottlenecks are expected to become more critical, and addressing these issues

will be a key priority in the next phase of the project.

 D3.2 – Scalability, Optimization and Co-Design Activities

Document name: D3.2 – Scalability, Optimization and Co-Design Activities Page: 72 of 75

Reference: D3.2 Dissemination: PU Version: 1.0 Status: Final

5 Conclusions

This deliverable reports the outcomes of the benchmarking and optimization activities

performed between M13 and M28. During the reporting period, the HPC infrastructure

used by the project was extended to include newly added EuroHPC systems. The

process of acquiring resources still remains cumbersome, and in addition the amount

of awarded resources through the access schemes typically utilized by the pilots has

been significantly reduced.

Despite the challenges faced with regard to resources, significant progress has been

achieved in terms of performance optimisation, leading to achieving the targets set for

3 out of the 4 KPIs related to benchmarking and optimisation. More notably, one of the

HiDALGO2 codes (UAP-Xyst) has already achieved scalability of up to almost 200k

cores, running on the LUMI-C partition. On the other hand, more performance

bottlenecks have been identified and all pilots are continuously working on improving

their scalability. For the last part of the project, the pilots will focus on more profiling

and bottleneck analysis to address communication and I/O challenges, improving

deployment and portability via containerization, and scaling applications to extreme

node counts.

 D3.2 – Scalability, Optimization and Co-Design Activities

Document name: D3.2 – Scalability, Optimization and Co-Design Activities Page: 73 of 75

Reference: D3.2 Dissemination: PU Version: 1.0 Status: Final

References

[1] Homepage of HiDALGO2 CoE, https://www.hidalgo2.eu/ [retrieved: 2025-04-

24]

[2] K. Nikas, et al. HiDALGO2 D3.1 - Scalability, Optimization and Co-Design

Activities, 2023, http://dx.doi.org/10.13140/RG.2.2.16877.15849

[3] Score-P wiki page, https://hpc-wiki.info/hpc/Score-P [retrieved:2025-04-24]

[4] Homepage of CUBE, https://www.vi-hps.org/Tools/Cube.html [retrieved:2025-

04-24]

[5] Homepage of EuroHPC JU, https://eurohpc-ju.europa.eu [retrieved: 2025-04-

24]

[6] Homepage of PSNC, https://www.psnc.pl/ [retrieved: 2025-04-24]

[7] Homepage of OpenFOAM, https://www.openfoam.com/ [retrieved: 2025-04-

24]

[8] L. Környei, Z. Horváth, A. Ruopp, A. Kovacs, and B. Liszkai. “Multi-scale

Modelling of Urban Air Pollution with Coupled Weather Forecast and Traffic

Simulation on HPC Architecture”. In Proceedings of the International Conference

on High Performance Computing in Asia-Pacific Region Companion (HPC Asia

2021), 2021

[9] J. Bakosi, “Open-source complex-geometry 3D fluid dynamics for applications

with unpredictable heterogeneous dynamic high-performance-computing loads”,

Computer Methods in Applied Mechanics and Engineering, Volume 418, Part B,

2024.

[10] RedSIM documentation, https://redsim.mathso.sze.hu/about/overview

[retrieved: 2025-04-28]

[11] SimpleFoam documentation,

https://doc.openfoam.com/2212/tools/processing/solvers/rtm/incompressible/simp

leFoam/ [retrieved: 2025-04-24]

[12] PimpleFoam documentation,

https://doc.openfoam.com/2212/tools/processing/solvers/rtm/incompressible/pim

pleFoam/ [retrieved: 2025-04-24]

[13] Github page of Zoltan, https://sandialabs.github.io/Zoltan [retrieved: 2025-04-

24] (2024)

[14] Ktirio Urban Building Framework, https://feelpp.github.io/ktirio-urban-

building/ktirio-urban-building/index.html[retrieved: 2025-04-24]

[15] IFC: Industry Foundation Classes standards,

https://technical.buildingsmart.org/standards/ifc/ [retrieved: 2025-04-24]

[16] OpenStreetMap Wiki, https://wiki.openstreetmap.org/wiki/Main_Page

[retrieved: 2025-04-24]

https://www.hidalgo2.eu/
http://dx.doi.org/10.13140/RG.2.2.16877.15849
https://hpc-wiki.info/hpc/Score-P
https://www.vi-hps.org/Tools/Cube.html
https://eurohpc-ju.europa.eu/
https://www.psnc.pl/
https://www.openfoam.com/
https://redsim.mathso.sze.hu/about/overview
https://doc.openfoam.com/2212/tools/processing/solvers/rtm/incompressible/simpleFoam/
https://doc.openfoam.com/2212/tools/processing/solvers/rtm/incompressible/simpleFoam/
https://doc.openfoam.com/2212/tools/processing/solvers/rtm/incompressible/pimpleFoam/
https://doc.openfoam.com/2212/tools/processing/solvers/rtm/incompressible/pimpleFoam/
https://sandialabs.github.io/Zoltan
https://feelpp.github.io/ktirio-urban-building/ktirio-urban-building/index.html
https://feelpp.github.io/ktirio-urban-building/ktirio-urban-building/index.html
https://technical.buildingsmart.org/standards/ifc/
https://wiki.openstreetmap.org/wiki/Main_Page

 D3.2 – Scalability, Optimization and Co-Design Activities

Document name: D3.2 – Scalability, Optimization and Co-Design Activities Page: 74 of 75

Reference: D3.2 Dissemination: PU Version: 1.0 Status: Final

[17] Homepage of Modelica association, https://modelica.org/ [retrieved: 2025-04-

24]

[18] Homepage of FMI standard, https://fmi-standard.org/ [retrieved: 2025-04-24]

[19] Github page of feel++, https://github.com/feelpp/feelpp[retrieved: 2025-04-24]

[20] Homepage of Docker, https://www.docker.com [retrieved: 2025-04-24]

[21] Homepage of Apptainer, https://apptainer.org/ [retrieved: 2025-04-24]

[22] WRF wiki page,

https://en.wikipedia.org/wiki/Weather_Research_and_Forecasting_Model

[retrieved: 2025-04-24]

[23] Open wildland fire modelling Wiki, https://wiki.openwfm.org/wiki/WRF-SFIRE

[retrieved: 2025-04-24]

[24] Homepage of EPICURE, https://epicure-hpc.eu [retrieved: 2025-04-24]

[25] H. Hersbach et al., “The ERA5 global reanalysis”. Quarterly Journal of the

Royal Meteorological Society, 2020.

[26] P.L. Andrews, “Behaveplus fire modeling system: past, present, and future”.

In Proceedings of 7th symposium on fire and forest meteorology, pages 23-25.

American Meteorological Society Boston MA, 2007.

[27] WPS V4 geographical static data downloads page.

https://www2.mmm.ucar.edu/wrf/users/wrf_users_guide/build/html/running_wrf.ht

ml [retrieved: 2025-04-25] NCAR (2024).

[28] Vampir wiki page, https://hpc-wiki.info/hpc/Vampir [retrieved: 2025-04-24]

[29] Chair for System Simulation, “waLBerla (widely applicable Lattice Boltzmann

from Erlangen)”. Zenodo, Oct. 30, 2023.

[30] M. Bauer et al., “waLBerla: A block-structured high-performance framework for

multiphysics simulations”. Computers & Mathematics with Applications, 2020.

[31] Homepage of ReFrame, https://reframe-hpc.readthedocs.io/en/stable/

[retrieved: 2025-04-24]

[32] M. Holzer, “Code generation in a lattice Boltzmann framework for exascale

computing”. Dissertation published at openfau, 2025.

[33] M. Holzer et al, “Highly efficient lattice Boltzmann multiphase simulations of

immiscible fluids at high-density ratios on CPUs and GPUs through code

generation”. The International Journal of High Performance Computing

Applications, 2021.

[34] Chair for System Simulation (Friedrich-Alexander Universität Erlangen-

Nürnberg), “lbmpy”. Zenodo, Oct. 28, 2024.

[35] M. Bauer et al, “lbmpy: Automatic code generation for efficient parallel lattice

Boltzmann methods”. Journal of Computational Science, 2021.

[36] F. Hennig et al, “Advanced Automatic Code Generation for Multiple

Relaxation-Time Lattice Boltzmann Methods”. SIAM Journal on Scientific

Computing, 2023.

https://modelica.org/
https://fmi-standard.org/
https://github.com/feelpp/feelpp
https://www.docker.com/
https://apptainer.org/
https://en.wikipedia.org/wiki/Weather_Research_and_Forecasting_Model
https://wiki.openwfm.org/wiki/WRF-SFIRE
https://epicure-hpc.eu/
https://doi.org/10.1002/qj.3803
https://www2.mmm.ucar.edu/wrf/users/wrf_users_guide/build/html/running_wrf.html
https://www2.mmm.ucar.edu/wrf/users/wrf_users_guide/build/html/running_wrf.html
https://hpc-wiki.info/hpc/Vampir
http://10.0.20.161/zenodo.10054460
http://10.0.20.161/zenodo.10054460
https://reframe-hpc.readthedocs.io/en/stable/
https://doi.org/10.25593/open-fau-1432
https://doi.org/10.25593/open-fau-1432
https://doi.org/10.1177/10943420211016525
https://doi.org/10.1177/10943420211016525
https://doi.org/10.1177/10943420211016525
http://10.0.20.161/zenodo.15277053
https://doi.org/10.1016/j.jocs.2020.101269
https://doi.org/10.1016/j.jocs.2020.101269
https://doi.org/10.1137/22M1531348
https://doi.org/10.1137/22M1531348

 D3.2 – Scalability, Optimization and Co-Design Activities

Document name: D3.2 – Scalability, Optimization and Co-Design Activities Page: 75 of 75

Reference: D3.2 Dissemination: PU Version: 1.0 Status: Final

[37] Chair for System Simulation (Friedrich-Alexander Universität Erlangen-

Nürnberg), “pystencils”. Zenodo, Oct. 28, 2024.

[38] C. Alt, M. Lanser, J. Plewinski, A. Janki, A. Klawonn, H. Köstler, U. Rüde et

al. “A continuous benchmarking infrastructure for high-performance

computing applications”. International Journal of Parallel, Emergent and

Distributed Systems 39(4), 501–523, 2024.

[39] F. Galeazzo, et al. HiDALGO2 D3.7 - Ensemble Scenarios for Global

Challenges, 2024, http://dx.doi.org/10.13140/RG.2.2.28421.15841

[40] Online Xyst report, “https://www.hidalgo2.eu/scaling-to-new-heights-xyst-code-

excites-with-unprecedented-196k-core-run-on-lumi-supercomputer”, [retrieved:

2025-04-29]

http://10.0.20.161/zenodo.15276904
http://10.0.4.56/17445760.2024.2360190
http://10.0.4.56/17445760.2024.2360190
http://dx.doi.org/10.13140/RG.2.2.28421.15841
https://www.hidalgo2.eu/scaling-to-new-heights-xyst-code-excites-with-unprecedented-196k-core-run-on-lumi-supercomputer/
https://www.hidalgo2.eu/scaling-to-new-heights-xyst-code-excites-with-unprecedented-196k-core-run-on-lumi-supercomputer/
https://www.hidalgo2.eu/scaling-to-new-heights-xyst-code-excites-with-unprecedented-196k-core-run-on-lumi-supercomputer/

