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1 a graphical plot that illustrates the performance of a binary classifier model. 
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Executive Summary 

Deliverable D4.3 develops foundational methodologies for integrating High-

Performance Data Analytics (HPDA) and Artificial Intelligence (AI) into the workflows 

of pilot applications addressing global challenges. This document provides a blueprint 

for enhancing performance through advanced data analytics and AI across various 

stages of application deployment, from model creation to result post-processing. 

Throughout the first phase of the HiDALGO2 project, these methodologies have been 

applied to pilot applications running on major computational platforms. The focus has 

been on improving accuracy, reducing simulation times, and enhancing result 

interpretation, emphasising generic applicability to ensure that the methodologies can 

be adapted across different domains.  

Initial findings suggest a promising potential for developed AI solutions to significantly 

enhance both the Wildfire and Urban Buildings pilots in terms of accuracy and 

efficiency. Specifically, both challenges and strengths were uncovered concerning 

wildfire data. While the unique trajectories of wildfires pose obstacles for similarity 

algorithms, the consistent alignment of fire data in PCA analysis underscores the 

potential significance of handcrafted features, particularly those extracted during the 

initial timestep, for understanding fire behaviour patterns. For Urban Buildings Model, 

early GNN model experiments consistently yield high AUC scores, suggesting 

robustness on affected building prediction even without full optimisation, with trends 

indicating the efficacy of undirected graphs, and promising correlation between 

predicted affected buildings and their proximity. These solutions are poised for further 

enhancements to comprehensively support each pilot within the HiDALGO2 project. In 

the future, they will undergo adaptation and benchmarking within the HiDALGO2 

infrastructure to ensure optimal performance and integration.  
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1 Introduction 

1.1 Purpose of the document 

The deliverable “D4.3 Advances in HPDA and AI for Global Challenges” is developed 

within the framework of WP4 and aims to enhance HiDALGO2 pilot applications and 

supportive actions through HPDA/AI solutions. This document outlines the HiDALGO2 

HPDA/AI methodology that ensures the reproducibility and validation of the gathered 

results. It further delineates the support provided to HiDALGO2 pilots by harnessing 

HPDA capabilities alongside AI techniques. This collaboration aims to refine multiple 

workflow stages, including model creation, data pre-processing, and result 

interpretation. 

1.2 Relation to other project work  

Deliverable D4.3 summarises initial findings regarding the pilot applications developed 

in WP5, described in deliverable D5.3, “Research Advancements for the Pilots,” using 

HPDA and AI. Deliverable D4.3 is related to activities within WP4, detailing HPDA and 

AI methods to support HiDALGO2 applications, which will eventually leverage the 

infrastructure described in D4.1, “Data Management and Coupling Technologies.” It is 

the first of a series of reports focusing on enhancing applications by HPDA and AI 

(D4.3 in M18, D4.3 in M36, and D4.3 in M48). 

1.3 Structure of the document 

This document is structured in 6 major chapters. 

Chapter 2 presents the data analytics approach and details the HPDA tools and 

frameworks. 

Chapter 3 presents the AI methodologies and frameworks that are utilised. 

Chapter 4 presents detailed descriptions of the methodologies applied across all pilot 

projects. 

Chapter 5 presents the adaptation to HiDALGO2 computational resources. 

Chapter 6 presents the conclusions of the deliverable. 
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2 HiDALGO2 HPDA methodology 

Global Challenge applications, by nature, produce massive data. Task 4.2 undertakes the 

challenge of utilising highly scalable analytics runtimes and algorithms to process data in time 

to be handled or provisioned by HPC applications. In this section of the present technical 

report, we present our general approach to developing High-Performance Data Analytics 

(HPDA) applications and our selected toolset comprising state-of-the-art frameworks and 

technologies. 

2.1 Approach to Data Analytics 

In this sub-section, we will delve into our 

approach to the challenge of developing Data 

Analytics applications within the HiDALGO2 

framework and its pilots. The methodology that 

has guided our efforts will be discussed and 

thoroughly documented, providing a high-level 

overview of the steps taken in each of our use 

cases. 

In general, to assist us in developing multiple 

applications tailored to address the diverse 

scenarios and use cases arising from the 

HiDALGO2 pilots, we've followed a roadmap 

consistent with a classical approach to the 

systems/software development life cycle 

(SDLC) [1] model depicted in Figure 2-1. The 

actions involved in each of the development phases are detailed in the following 

paragraphs. 

Planning: In the HiDALGO2 HPDA development context, the initial planning phase 

involves two key tasks: i) gathering data and ii) documenting use case scenarios. 

These activities are carried out through bilateral meetings with pilot owners. Our 

conversations usually start with a deep dive into the objectives of the pilots. 

Furthermore, we use data samples shared by pilot owners to kick off discussions on 

potential use cases for HPDA. The primary goal in this phase is to pinpoint issues that 

HPDA methods can address. Later iterations of this phase involve collecting feedback 

from the pilot owners and reassessing the development progress. 

Analysis: A thorough requirement analysis is conducted once the identified challenges 

are established. This analysis involves deconstructing the problems into smaller 

segments and scrutinising existing literature for cutting-edge solutions. This review 

encompasses both algorithmic and theoretical perspectives, as well as evaluations of 

technical standards, including scalability and consistency. 

Figure 2-1 The classic SDLC model 
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Design: During this stage, we proceed with selecting tools for our implementation. 

Following a comprehensive analysis of the identified challenges in the preceding 

phase, we determine the algorithms and frameworks to be employed. Moreover, in 

certain instances where the use of basic prototypes to validate our approach is deemed 

essential, the design phase also encompasses the blueprinting of these small-scale 

components. 

Implementation: The implementation process typically unfolds in several distinct 

phases. In the case where a small-scale prototype is involved, we commence by 

developing that, employing a portion of the available data to assess the accuracy and 

robustness of our methodologies. Once the efficacy of our methods has been verified, 

further iterations can focus on advancing to implementations reliant on distributed 

systems and execution frameworks, as delineated in subsection 2.2. 

Maintenance: The maintenance phase is initiated upon deployment of a full-scale 

prototype of the HPDA application on the designated HiDALGO2 HPDA infrastructure. 

As an integral part of this phase, we undertake the necessary measures for deploying 

our applications in an environment accessible to stakeholders within HiDALGO2. 

Moreover, this phase encompasses addressing issues such as bug-fixing and 

implementing minor updates aimed at improving the quality-of-life and user experience 

of the deployed applications. 

 

It is important to note that the development process involves multiple iterations of this 

cycle. During certain iterations, some documented phases might be omitted to 

enhance flexibility and expedite progress. Nonetheless, when and where it might be 

necessary, we plan to regularly revisit and reassess our design and implementation 

choices and actions. For each of the HiDALGO2 pilots, we will report the actions taken 

so far and explain our progress and future steps in the context of the development 

cycle presented here. 

2.2 HPDA tools and frameworks 

In the rapidly evolving landscape of High-Performance Data Analytics, the significance 

of selecting the most appropriate tools and frameworks cannot be overstated. The 

effectiveness of data analytics projects hinges on this critical decision-making process, 

where several factors must be considered to ensure the success of our endeavours: 

• Scalability 

• Performance 

• Ease of Integration 

• Adaptability 

Scalability stands as a paramount consideration. As datasets grow exponentially, our 

chosen tools' ability to scale effectively determines the feasibility and efficiency of 

processing large volumes of data. The capacity to maintain performance levels while 
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scaling up or down according to data volume and computational demand is essential 

for the adaptability and sustainability of all data analytics projects.  

Equally important is performance; the selected tools must not only be able to handle 

large datasets but also do so in a timely manner. This provides the agility required in 

today's fast-paced analytical environments, where the speed of data processing can 

significantly impact decision-making and operational efficiency. This aspect can prove 

life-critical in certain scenarios, such as in the Wildfires pilot use case. 

Another crucial consideration is the ease of integration. Data analytics ecosystems 

are inherently complex, consisting of various data sources, processing engines, and 

storage systems. The tools and frameworks we select must seamlessly integrate with 

existing components, facilitating a cohesive and efficient workflow. Additionally, we aim 

to be able to integrate our services with the existing software infrastructure they will 

need to interact with. 

The last element to be considered is the software infrastructure’s adaptability to 

future technological advancements and data analytics trends. The landscape of 

HPDA is constantly changing, and our toolkit must be flexible enough to adapt to new 

requirements and capabilities over time.  

Given these considerations, it is imperative not only to select tools that best meet these 

criteria but also to understand the landscape of available technologies. The 

subsequent sections will introduce the tools chosen for their distinct advantages in 

HPDA – such as Hadoop Filesystem, Apache Spark, Apache Flink and Ray – but also 

explore viable alternatives that were considered.  

2.2.1 Hadoop Distributed File System 

The Hadoop Distributed File System (HDFS) [2] is a distributed file system designed 

to store and manage large volumes of data reliably and efficiently across clusters of 

computers. In the architecture of our HPDA framework, we have strategically chosen 

the HDFS, a core component of the Apache Hadoop [3] ecosystem, as our primary file 

system for storing data. This decision is rooted in HDFS's unparalleled ability to store 

and manage vast amounts of data across a distributed computing environment. As a 

cornerstone of modern big data and analytics solutions, HDFS provides a robust and 

scalable foundation for our data storage needs, aligning perfectly with our project's 

objectives and technical requirements. Its commanding position in the Hadoop 

ecosystem, the seamless integration it provides with other components in our HPDA 

technology stack – such as Apache Spark [4] (cf. Section 2.2.2) – and the optimisations 

it supports make it an ideal candidate. 

Scalability: HDFS exemplifies scalability, designed from the ground up to support 

massive data sets. It achieves this by distributing data across multiple nodes within a 

cluster, facilitating not only the storage of large volumes of data but also enabling 

efficient parallel processing. This approach ensures seamless scalability, as the 
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system can be expanded by adding more nodes to the cluster without any downtime 

or loss of performance.  

Performance: HDFS performance is optimized for high-throughput access to data, 

especially suited for applications that manage large datasets. It is built on a batch 

processing model, where data is written once and read many times, thus minimising 

disk seek times. Engineered to operate on commodity hardware, HDFS is both cost-

effective and adept at handling enormous datasets with high efficiency.  

Ease of Integration: HDFS's integration capabilities are extensive, offering 

compatibility with a broad spectrum of data processing frameworks within the Apache 

Hadoop ecosystem, such as MapReduce, Apache Hive, and Apache HBase. Its open-

source nature is supported by a vibrant community, which provides ample 

documentation and tools for managing data within HDFS, thereby simplifying 

integration efforts.  

Technical Considerations: Technically, HDFS operates on a master/slave 

architecture, with the NameNode managing the file system namespace and 

DataNodes managing storage on the nodes they run on (depicted in Figure 2-2). This 

setup supports file storage in a namespace. User data can be stored in files, internally 

divided into blocks stored across DataNodes. This design ensures fault tolerance and 

system reliability by replicating data across multiple nodes.  

Adaptability to Future Technological Advancements: The architecture of HDFS is 

both robust and adaptable, allowing it to stay relevant in the face of evolving data 

storage and processing technologies. Its compatibility with diverse data types and 

formats, along with integration capabilities with emerging machine learning and 

analytics tools, ensures that HDFS remains at the forefront of data processing 

technology.  

Figure 2-2 HDFS Architecture 
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By selecting the Hadoop Distributed File System as our foundational storage solution, 

we underscore our commitment to leveraging leading-edge technology to meet the 

rigorous demands of high-performance data analytics. This choice reflects our 

strategic focus on scalability, performance, ease of integration, and future-proofing our 

data analytics infrastructure. 

2.2.2 Apache Spark 

Apache Spark [4] is a powerful open-source unified analytics engine for large-scale 

data processing, with built-in modules for streaming, SQL, machine learning, and 

graph processing. Spark has emerged as one of the most significant technologies in 

the big data analytics domain, offering both versatility and high performance for data 

processing tasks.  

Scalability: Apache Spark is renowned for its exceptional scalability. It is capable of 

processing petabytes of data across thousands of nodes. It achieves this through its 

advanced DAG (Directed Acyclic Graph) execution engine, which optimises workflow 

and resource allocation. Spark's in-memory computation capabilities drastically reduce 

the need for disk I/O, enabling it to scale efficiently and handle increasing data loads 

without sacrificing performance.  

Performance: Spark is designed for speed, offering up to 100 times faster 

performance for certain applications, particularly those that can benefit from in-memory 

processing, compared to other big data technologies like Hadoop MapReduce [5]. This 

performance advantage is especially notable in data analytics tasks, where large 

datasets are common. Spark's ability to cache data in memory between operations can 

significantly accelerate complex data transformations and aggregations. This 

capability is crucial for analytics workflows involving repetitive data processing tasks, 

such as joining large datasets, filtering, and summarisation, where traditional disk-

based processing would incur significant overheads. By optimising these operations, 

Spark ensures rapid insights into data, enhancing the productivity and efficiency of 

data analytics pipelines.  

Ease of Integration: Spark offers robust integration capabilities, particularly with the 

Hadoop ecosystem, including seamless compatibility with HDFS. In conjunction with 

other HPDA tools, Apache Spark functions particularly well when integrated with the 

Hadoop Distributed File System (HDFS), where it can leverage HDFS for massive 

storage capabilities while providing powerful processing speeds. This symbiosis 

enhances both storage and analysis capabilities, making Apache Spark an 

indispensable component of any data analytics framework. Moreover, Spark supports 

multiple data sources like JSON [6], CSV [7], and Parquet [8], and can be integrated 
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with higher-level libraries and frameworks, enhancing its versatility and ease of use in 

diverse data environments.  

Technical Considerations: Apache Spark's architecture is built around the concept 

of RDDs (Resilient Distributed Datasets), which are fault-tolerant collections of 

elements that can be operated on in parallel. Its cluster mode offers several 

deployment options, including standalone, Apache Mesos, and Kubernetes, with the 

ability to run atop HDFS (cf. Section 0), providing a flexible and powerful computing 

platform. Spark’s API is available in multiple programming languages, including Scala, 

Java, Python, and R, making it accessible to many developers and data scientists.  

Some key components of the Apache Spark architecture, depicted in Figure 2-3, are 

the following: 

• Driver Program: The driver program is responsible for orchestrating the 

execution of the Spark application. It communicates with the cluster manager to 

acquire resources and coordinate the execution of tasks. 

• Cluster Manager: Spark can run on various cluster managers such as Apache 

Mesos [9], Hadoop YARN [10], or Spark's standalone cluster manager. The 

cluster manager allocates resources and manages the execution of tasks 

across the cluster. 

• Executors: Executors are worker nodes in the Spark cluster responsible for 

executing tasks. Each executor is assigned a portion of the cluster's resources 

(CPU cores, memory) and is responsible for running computations and storing 

data in memory or disk. 

Figure 2-3 Apache Spark Architecture 
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• Tasks: In Apache Spark, tasks are the smallest units of work that are scheduled 

by the Spark scheduler and executed by the executor nodes in a Spark cluster. 

Tasks are responsible for processing partitions of data in parallel across the 

cluster. 

 

Adaptability to Future Technological Advancements: Spark's design is inherently 

adaptable, with a vibrant community continuously working on enhancements and 

integrations to keep pace with the rapid advancements in data analytics. Its modular 

architecture allows for the easy addition of new functionalities and improvements in 

many areas. 

By incorporating Apache Spark into our data analytics framework, we harness its high-

performance processing capabilities alongside its scalability and ease of integration, 

ensuring that our analytics operations are not only efficient but also poised for future 

expansions and technological integrations. 

2.2.3 Apache Flink 

Apache Flink [11] is an open-source stream processing framework with powerful batch 

processing capabilities designed to handle large-scale data analytics and real-time 

processing tasks. Known for its low-latency, high-throughput processing, Flink is a 

versatile tool for building real-time analytics applications and data pipelines.  

Scalability: Apache Flink is built for horizontal scalability, allowing it to handle massive 

data volumes with ease. It achieves scalability through its distributed stream 

processing model, where data is partitioned and processed in parallel across a cluster 

of machines. Flink's dynamic task allocation and fault tolerance mechanisms ensure 

that processing resources are efficiently utilised, making it suitable for both small-scale 

and large-scale deployments.  

Performance: Flink is optimised for low-latency and high-throughput processing, 

making it ideal for real-time analytics and event-driven applications. It achieves high 

performance through its pipelined execution model, where data is processed in a 

continuous stream, minimising processing latencies. Flink's support for stateful 

computations enables it to maintain its application state efficiently, facilitating real-time 

complex event processing and analytics.  

Ease of Integration: Apache Flink offers seamless integration with other data 

processing frameworks, including HDFS (0) for distributed storage and Apache Spark 

(2.2.2) for batch processing. Its connectors for various data sources and sinks enable 

easy integration with external systems, allowing data to be ingested and processed 

from diverse sources. Flink's support for standard APIs like SQL and DataStream API 

simplifies application development, while its ecosystem of libraries and tools enhances 

productivity and flexibility.  
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Technical Considerations: Flink's architecture is based on a distributed dataflow 

model, where data is processed as streams of records flowing through operators. Its 

runtime consists of a cluster manager responsible for resource allocation and 

coordination, task managers executing processing tasks, and a job manager 

coordinating the overall execution of jobs. Flink provides support for both batch and 

stream processing, enabling unified analytics across different data types.  

In terms of system architecture, a depiction of an Apache Flink cluster is presented in 

Figure 2-4. The cluster contains two types of nodes: the JobManager and the 

TaskManagers. The JobManager is responsible for coordinating and scheduling jobs 

– it decides when to schedule the next task (or set of tasks), reacts to finished tasks or 

execution failures, coordinates checkpoints, and coordinates recovery from failures, 

among others. The JobManager assigns tasks to TaskManagers and monitors their 

progress. The TaskManagers execute the actual processing tasks. The level of 

parallelism a Flink cluster can offer depends on the total number of task slots available.  

Adaptability to Future Technological Advancements: Apache Flink is designed to 

adapt to evolving data processing requirements and technological advancements. Its 

support for stateful processing, event time semantics, and advanced windowing 

operations positions it as a leading framework for complex event processing, real-time 

analytics, and machine learning. Flink's active community and commitment to 

innovation ensure that it remains at the forefront of stream processing technology. 

In conjunction with other HPDA tools, Apache Flink integrates seamlessly with HDFS 

for distributed storage and Apache Spark for batch processing. Its compatibility with 

these frameworks allows for a cohesive analytics ecosystem, where data can be 

processed and analysed in real-time or batch mode, depending on the requirements 

of the application. 
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2.2.4 Ray 

Ray [12] is an open-source distributed execution framework designed for high-

performance and scalable Python applications. Developed by the RISELab at UC 

Berkeley, Ray provides a flexible and efficient platform for building and deploying 

distributed applications, ranging from reinforcement learning algorithms to distributed 

data processing tasks.  

Scalability: Ray excels in scalability, offering seamless scaling capabilities for Python 

applications across a cluster of machines. It achieves scalability through its distributed 

execution model, where tasks are dynamically allocated and executed across a cluster 

of workers. Ray's lightweight and flexible architecture enables it to handle diverse 

workloads, from small-scale experiments to large-scale production deployments, with 

ease. 

Performance: Ray is optimized for high performance, leveraging efficient task 

scheduling and resource management mechanisms to minimize execution latencies. 

Its asynchronous execution model allows tasks to execute concurrently, maximizing 

resource utilization and throughput. Ray's support for distributed data processing and 

Figure 2-4 Apache Flink Architecture 
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computation caching further enhances performance, making it suitable for demanding 

analytics and machine learning workloads.  

Ease of Integration: Ray offers seamless integration with existing Python libraries and 

frameworks, allowing developers to leverage their favourite tools and APIs within Ray-

based applications. It provides native support for popular Python libraries such as 

NumPy, Pandas, and TensorFlow, enabling easy adoption and integration into existing 

workflows. Ray's intuitive API and comprehensive documentation streamline the 

development process, reducing the learning curve for new users.  

Technical Considerations: Ray's core abstraction is the Actor model, where 

lightweight, stateful objects (Actors) communicate asynchronously via message 

passing. This model enables flexible and scalable distributed computation, allowing 

developers to express complex distributed workflows with ease. Ray's task scheduling 

and resource management capabilities ensure efficient utilisation of cluster resources, 

optimising performance and scalability.  

Adaptability to Future Technological Advancements: Ray is designed to adapt to 

evolving technological advancements and requirements in distributed computing. Its 

modular architecture and extensible API make it easy to integrate with new 

technologies and frameworks, ensuring compatibility with emerging trends in data 

analytics and machine learning. Ray's active community and ongoing development 

efforts ensure that it remains at the forefront of distributed computing innovation.  

Compatibility with Other Tools: Ray complements other HPDA tools, such as HDFS 

and Apache Spark, providing a flexible and scalable platform for distributed Python 

applications. It seamlessly integrates with Apache Spark for distributed data 

processing and analytics, allowing Python-based applications to leverage Spark's 

capabilities. Similarly, Ray can interface with HDFS for distributed storage, enabling 

efficient data access and processing within Ray-based applications. 

2.2.5 Alternative Tools and Final Selection 

In our selection process, several alternative tools were evaluated alongside our chosen 

technologies. Each offers unique features and capabilities that are beneficial under 

different circumstances. Here, we explore some of these alternatives, comparing them 

to our selected tools to elucidate why they were not chosen as our primary solutions. 

  

Dask: As an alternative to Apache Spark, Dask supports complex parallel 

computations for analytics, particularly effective in the Python ecosystem. While Dask 

excels in integrating with Python data science tools like Pandas and NumPy, it lacks 

the extensive JVM ecosystem support that Spark provides, which is crucial for our 

existing infrastructure. 
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NVIDIA RAPIDS: Focused on GPU acceleration, NVIDIA RAPIDS could be an 

alternative to Ray for specific machine learning and data processing tasks. It excels in 

environments that can leverage GPU resources for substantial performance 

improvements. However, its dependency on specific hardware configurations makes it 

less versatile and scalable across diverse deployment scenarios compared to Ray. 

  

Apache Storm: For real-time data processing, Apache Storm presents a robust 

alternative to Apache Flink. It is known for its high processing speed and fault 

tolerance. Nonetheless, Flink provides superior consistency and state management 

features, which are critical for our complex real-time analytics requirements. 

 

Considering these alternatives ensures a well-rounded decision-making process. Each 

tool was assessed not only on its technical merits but also on its alignment with 

strategic goals and operational contexts. The final selection of tools for high-

performance data analytics was based on a thorough evaluation of specific use cases 

and the characteristics of the data involved. This evaluation also took into account the 

available expertise, ensuring that the chosen tools could integrate well with existing 

workflows and enhance efficiency. By aligning tool choices with both data requirements 

and team capabilities, the aim is to build an analytics infrastructure that is robust and 

adaptable to future needs. 
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3 HiDALGO2 AI methodology 

Within the framework of the HiDALGO2 project, the integration of Artificial Intelligence 

(AI) stands as a pivotal driver for enhancing the efficiency and effectiveness of pilot 

applications developed in WP5, along with supportive actions in WP6. This section 

delineates the structured approach employed in harnessing AI techniques to bolster 

pilot workflows, aligning with the project's overarching objectives. With a focus on 

model creation, data pre-processing, model execution, and result post-processing, the 

HiDALGO2 AI methodology aims to unlock the full potential of AI across various stages 

of the pilot workflows. By leveraging both machine learning (including deep learning) 

and rule-based approaches, this methodology anticipates notable enhancements in 

accuracy, simulation time, time-to-first-fit, and result interpretation. By seamlessly 

integrating AI tasks into simulation applications or workflows, these hybrid workflows 

offer unprecedented opportunities to expedite simulations while maintaining 

acceptable levels of accuracy.  

The process of developing and utilising AI methodologies encompasses five essential 

components: Model Formalization, Data acquisition, Exploratory Data Analysis (EDA), 

Model Design, and Model Execution. The graphical illustration presented in Figure 3-

1 depicts a schematic depiction of the iterative process involved in an artificial 

intelligence (AI) project cycle. Within this cycle, Model Formalization and Data 

Acquisition emerge as pivotal stages, exerting profound influence over subsequent 

procedural facets. The initial phases have been subjected to thorough examination in 

the following sections, concurrent with the description of High-Performance Data 

Analytics (HPDA) procedures. Consequently, the focus herein is directed towards 

delineating the remaining three sequential steps integral to the development of an AI 

project. 

EDA serves as the initial phase, allowing stakeholders to gain critical insights into the 

underlying data landscape, and facilitating informed decisions regarding feature 

selection, anomaly detection, and relationship identification. Model Design follows, 

wherein suitable algorithms and architectures are selected and tailored to address 

specific objectives, ensuring optimization for accuracy, efficiency, and interpretability. 

Finally, Model Execution marks the operational deployment of the designed models, 

involving rigorous evaluation and validation to assess performance against predefined 

metrics and benchmarks, while also enabling scalability and adaptability to real-world 

scenarios. These steps are fundamental in developing AI methodologies as they 

provide a structured framework for understanding data, designing effective models, 

and deploying them in operational workflows. Through EDA, Model Design, and Model 

Execution, AI methodologies are refined iteratively, fostering innovation, and driving 

impactful outcomes across various domains. In the subsequent sections, we delve into 

each component, elucidating their significance and methodologies within the context 

of developing AI-driven solutions. 
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Figure 3-1 AI project pipeline  

 

3.1 Exploratory Data Analysis 

Exploratory Data Analysis (EDA) is a critical step in the data science process and is 

closely aligned with the development of AI methodologies [13]. It allows us to 

understand the data we are working with, which is crucial for any AI model. By 

understanding the data, we can make informed decisions about the modelling process, 

such as which features are important, what type of model to use, and how to tune the 

model parameters. The questions that this procedure usually must answer are the 

following. 

 

What are the types of datasets? 

The first step in EDA is examining the types of data. This is important because different 

types of data require different handling techniques. For example, categorical data may 

need to be encoded, while numerical data may need to be normalised. Most algorithms 

require a consistent type of input; for example, some algorithms only accept integer 

inputs, while others may require floating-point data. In the literature, several methods 

have been proposed for changing the type of data in order to normalise it in a unified 

way. One common approach for handling categorical values is one-hot encoding. This 

technique transforms categorical variables into a binary format, with each category 

represented as a separate binary column. Another method is label encoding, which 

assigns a unique numerical value to each category. However, it is important to note 

that these methods have their own advantages and limitations, and the choice of 

encoding technique should be based on the specific characteristics of the dataset and 

the requirements of the modelling task.  

 

What is the type distribution of each feature of the dataset? 

Next, we examine the data distribution. This step is crucial as it provides insights into 

the range and central tendencies of our data, which in turn can profoundly influence 
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the choice of modelling techniques. Different data distributions can impact the 

modelling process and the performance of models in various ways. For instance, data 

with a normal distribution, characterised by a symmetrical bell-shaped curve, is often 

well-suited to certain types of models like linear regression, where assumptions of 

normality are inherent. In contrast, skewed distributions, such as positively or 

negatively skewed data, may require transformations or specialised modelling 

approaches to account for the asymmetry and ensure accurate predictions. Similarly, 

multimodal distributions, where data exhibits multiple peaks or modes, may 

necessitate the use of more complex modelling techniques capable of capturing the 

underlying structure of the data. Additionally, heavy-tailed distributions, characterised 

by a high frequency of extreme values, may pose challenges for traditional statistical 

models and may require robust modelling techniques that are less sensitive to outliers. 

A thorough analysis of the dataset's distribution is essential to selecting the appropriate 

algorithm for training. Additionally, this analysis can provide useful insights about the 

dataset, as seen in the case of the MTG pilot, where correlations were identified 

between the timestep of a fire and commonly used fire shape descriptors. 

  

Are there any missing values in the dataset? 

Handling missing values is another common and crucial step in EDA. Missing data 

poses a pervasive challenge in datasets and can profoundly affect the performance 

and reliability of an AI model. Failure to address missing values adequately can 

introduce biases and inaccuracies into the model, compromising its effectiveness in 

generating meaningful insights. Moreover, the extent of missing values within a dataset 

can greatly impact its overall quality and necessitate different methodologies for 

handling them effectively. For instance, datasets with a high proportion of missing 

values may require more sophisticated imputation techniques or alternative modelling 

approaches to mitigate the impact on the final results. 

 

Does the dataset contain outliers? 

Detecting and managing outliers is another essential aspect of EDA. Outliers, or data 

points that deviate significantly from the rest of the dataset, can exert a substantial 

influence on the performance and accuracy of our models. These anomalies have the 

potential to distort the underlying patterns and relationships within the data, leading to 

biased or inaccurate model predictions. Therefore, it is imperative to identify outliers 

and implement appropriate strategies to mitigate their impact during the modelling 

process. Additionally, the presence and nature of outliers can vary across datasets, 

necessitating tailored approaches for detection and handling. Robust techniques such 

as trimming, winsorization, or the use of robust statistical measures can help identify 

and mitigate the effects of outliers, ensuring the integrity and reliability of the model 

outputs. 
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Does the dataset contain duplicate instances? 

Handling duplicate data is another critical step in EDA that warrants attention. 

Duplicate data, if left unaddressed, can introduce biases and challenges in the 

modelling process, potentially leading to overfitting. Overfitting occurs when a model 

learns to capture noise or irrelevant patterns in the training data, resulting in excellent 

performance on the training set but poor generalisation to new, unseen data. By 

removing duplicate data, analysts can mitigate the risk of overfitting and ensure that 

the model learns from a diverse set of examples, thereby improving its ability to 

generalise to unseen data and make accurate predictions. Additionally, eliminating 

duplicate data enhances the efficiency of the modelling process by reducing 

redundancy and streamlining the dataset. This ensures that computational resources 

are utilised optimally and that the resulting model is more robust and reliable. 

 

Are there any biases or correlations among the data's features? 

Assessing biases and correlations among features is a crucial aspect of EDA that 

demands thorough examination. Biases or correlations within the data can significantly 

impact the performance and reliability of AI models, potentially leading to skewed or 

inaccurate predictions. Analysts can ensure the integrity and fairness of the model 

outputs by identifying and addressing biases or correlations during the EDA process. 

Biases, such as sampling bias or measurement bias, may arise from systematic errors 

in the data collection process and can introduce inaccuracies or distortions in the 

modelling results. Similarly, correlations among features can lead to multicollinearity, 

where two or more variables are highly correlated, making it difficult to distinguish their 

individual effects on the target variable. Detecting and addressing biases or 

correlations enables analysts to make informed decisions regarding feature selection, 

model design, and interpretation of results, ultimately enhancing the reliability and 

generalizability of the AI models. Moreover, mitigating biases and correlations fosters 

transparency and fairness in AI-driven decision-making processes, ensuring equitable 

outcomes across diverse populations and contexts. However, certain correlations 

among data features may be useful in model development. For instance, in the case 

of the MTG pilot, the goal is to develop a search algorithm to find the closest fire to a 

simulated one. Revealed correlations between specific features and fire are valuable 

in developing this algorithm. For example, if there is a clear correlation between the 

fire and wind direction, it may be wise to emphasize this feature to enhance the training 

phase. Additionally, this knowledge is useful for evaluating the model's performance 

beyond standard metrics. For instance, if the model does not learn this high correlation, 

there may be an error in the training phase. Furthermore, if there is a spurious 

correlation between the features, it is crucial to identify it to remove it, add more data 

to mitigate it, or employ algorithms that automatically ignore such spurious correlations. 
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Is there a necessity for the normalisation of data? 

Assessing the need to normalise the data is a crucial step in EDA that merits careful 

consideration. Normalising and scaling the data can have a profound impact on the 

performance and efficacy of AI models. Many machine learning algorithms, particularly 

those based on distance metrics or gradient descent optimisation, perform more 

effectively when the features are on a similar scale. Normalisation ensures that all 

features contribute equally to the model's learning process, preventing features with 

larger scales from dominating the optimisation process. In literature, for instance, 

various descriptors have been introduced to illustrate the progression of a fire [14]. 

These include the fire's area and its angle, determined by the minimal bounding box 

calculated using the rotating callipers method. Typically, the area of a fire covers 

hundreds of thousands of square meters, whereas the angle varies from 0 to 360 

degrees. If these two measurements are employed to characterise a fire without any 

form of normalisation, minor differences in the area will dominate, overshadowing any 

significant variations in the angle. By scaling the data, analysts can facilitate the 

model's ability to learn the relationships between different features more effectively, 

leading to improved performance and predictive accuracy. Additionally, normalisation 

enhances the stability and convergence of optimization algorithms, thereby expediting 

the training process and reducing the risk of overfitting. Identifying the need for 

normalisation during EDA allows analysts to proactively address potential scaling 

issues and optimize the dataset for subsequent modelling stages.  

3.2 Model Design 

Model Design is a pivotal phase in the development of AI methodologies, where the 

foundation laid during EDA is transformed into actionable insights and solutions. This 

section delves into the intricate process of crafting robust and effective models tailored 

to address the objectives and challenges of the task at hand. Model Design 

encompasses a diverse array of techniques, algorithms, and methodologies, each 

meticulously selected and tailored to optimise performance, interpretability, and 

scalability. By leveraging insights gleaned from EDA, analysts embark on a journey of 

model formulation, iteration, and refinement, with the ultimate goal of delivering 

solutions that resonate with the complexities of real-world scenarios. The significance 

of Model Design lies not merely in developing predictive models, but in crafting 

solutions that encapsulate the nuances of the data landscape and align with the 

overarching objectives of the project.  

The first step of model design is the formalisation of the problem statement. This 

foundational stage involves precisely defining the objectives, constraints, and variables 

of the problem at hand. By establishing a clear and structured problem statement, 

analysts provide a roadmap for the entire modelling process. This step guides the 

selection of appropriate algorithms, feature engineering techniques, and evaluation 
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metrics, ensuring that the resulting model is tailored to address the specific challenges 

and requirements of the task. Additionally, formalising the problem statement facilitates 

effective communication and collaboration among stakeholders, fostering alignment of 

expectations and objectives. Overall, this initial step sets the stage for the subsequent 

phases of model design, playing a pivotal role in shaping the direction and outcomes 

of the modelling process. Two primary features, among others, that should be 

considered and may impact the modelling process at this stage. 

 

Objective Definition 

Suppose the objective is to minimise the computational cost of a simulation while 

maintaining a certain level of accuracy. In this case, the problem definition influences 

the choice of model design by prioritising efficiency over complexity. The model may 

focus on identifying critical parameters or features that significantly impact the 

simulation's outcome and develop simplified approximations or surrogate models to 

replicate the behaviour of the original simulation at a fraction of the computational cost. 

Techniques such as dimensionality reduction [15], simplified physics-based models, or 

meta-modelling approaches like Gaussian Process Regression [16] can be employed 

to achieve this objective. By clearly defining the objective as minimising computational 

cost while preserving accuracy, the model design can prioritise strategies that strike a 

balance between efficiency and fidelity. 

 

Constraint Consideration 

If there are constraints on computational resources or time limitations, the problem 

definition will influence the design of the model by imposing restrictions on the 

complexity and computational requirements of the solution. For instance, if there are 

limitations on the available computing resources, the model design may need to focus 

on developing lightweight algorithms or parallelisation techniques to distribute the 

computational workload efficiently. Additionally, time constraints may necessitate the 

use of iterative optimisation algorithms that converge quickly or the adoption of 

approximation methods that provide near-optimal solutions within a limited timeframe. 

By incorporating these constraints into the problem definition, the model design can 

adapt to the practical realities of the simulation environment and deliver solutions that 

are feasible within the specified constraints. 

Another significant choice in Model Design revolves around the representation and 

processing of input data, with different formats presenting distinct challenges and 

opportunities. Among these formats, images, categorical data, floating-point data, 

vector data, and graphs each require tailored approaches to model development. 

Moreover, integrating multimodal data, such as images and categorical data, adds 

complexity but can enhance the models' ability to analyse the data and yield more 

robust results. 



D4.3 Advances in HPDA and AI for Global Challenges 

                                                                       

 

Document name: D4.3 Advances in HPDA and AI for Global Challenges Page:   29 of 72 

Reference: D4.3 Dissemination:  PU Version: 1.0 Status: Final 

 

 

Images, for instance, demand specialised convolutional neural networks (CNNs) 

capable of efficiently capturing spatial relationships and visual features. Categorical 

data necessitates techniques such as one-hot encoding or embedding layers to 

transform qualitative variables into a numerical format amenable to modelling. 

Floating-point data typically lends itself well to traditional machine learning algorithms 

like linear regression or decision trees, which operate effectively on continuous 

numerical data. Vector data, characterised by arrays of numerical values, often 

benefits from techniques such as dimensionality reduction or clustering to uncover 

underlying patterns. Notably, graphs present a unique challenge due to their complex, 

interconnected nature, requiring specialised graph neural networks (GNNs) or graph 

embedding techniques to effectively capture the relational information encoded within 

the graph structure. Efficient modelling of graphs is paramount, as they serve as 

powerful representations for diverse real-world phenomena such as social networks, 

biological systems, and infrastructure networks. By leveraging specialised techniques 

tailored to each data format, Model Design ensures that the resulting models are 

equipped to handle the intricacies of the input data, maximising their effectiveness and 

impact across various domains and applications. 

Another key factor in Model Design is the integration of domain knowledge [17], which 

plays a pivotal role in shaping the methodology and approach employed. Especially in 

tasks where a profound understanding of the problem domain exists, leveraging 

domain expertise becomes imperative for ensuring the relevance and effectiveness of 

the models developed. This integration allows analysts to encode nuanced insights 

and constraints directly into the model, guiding its behaviour and decision-making 

process in alignment with real-world considerations. One of the primary ways domain 

knowledge manifests in Model Design is through the development of handcrafted rules 

and the extraction of domain-specific features. These tailored approaches enable the 

model to capture the intricacies and complexities inherent in the problem domain, 

facilitating more accurate and contextually relevant predictions. Furthermore, the depth 

and breadth of domain knowledge directly influence the extent to which it should be 

applied in the modelling procedure, with higher levels of expertise necessitating more 

sophisticated and nuanced approaches. By embracing domain knowledge as a 

foundational element of Model Design, analysts can develop models that not only 

exhibit superior performance but also resonate with the intricacies of the domain, 

ultimately leading to more impactful and actionable outcomes.  

The integration of domain knowledge from each pilot into the model design is 

considered pivotal. Specifically, both defining the problem and incorporating the pilots' 

domain expertise into each task are deemed essential during the development of AI 

methodologies. Another critical aspect is ensuring proper analysis, inspection, control, 

and collaboration between the AI team and each pilot to craft tailored AI solutions. This 

underscores the importance of establishing clear communication channels from the 

project's outset. Hence, a shared document accessible to both the AI team and each 
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pilot was established. This document served as a platform for comprehensive 

communication, facilitating a thorough understanding of every facet of the problem, 

including specific constraints, proposed methodologies, relevant literature, and the 

experimental findings and results generated by the AI team.  

In Model Design, the significance of properly modelling the input data cannot be 

overstated. While datasets may often contain features in standard formats such as 

floating-point tensors, there are instances where additional structural information is 

embedded within the data, presenting unique challenges and opportunities for 

modeling. For example, in the UNISTRA pilot, where the dataset pertains to building 

information, spatial structural information is inherent in the data. Rather than relying on 

classical algorithms, leveraging this spatial information by transforming the data into a 

graph format allows for the utilisation of graph algorithms, thus enabling a more 

effective solution to the problem at hand. A similar approach was observed in the MTG 

pilot, where simulation data was complemented with handcrafted features derived from 

domain knowledge. In such cases, the use of tailored approaches that accommodate 

the specific characteristics of the data becomes essential. This may entail the 

development of mapping functions to transform the dataset into a format conducive to 

the modelling algorithm, ensuring that all aspects of the information provided are 

effectively utilised for better problem modelling and solution generation.  

3.3 Model Execution 

Model Execution represents the crucial phase where developed AI models transition 

from theory to practice, poised to deliver tangible outcomes in real-world scenarios. In 

this section, some of the steps of model execution are analysed, delving into the 

intricate process of deploying, evaluating, and refining these models. The imperative 

of proper performance evaluation and interpretability is emphasised in driving 

meaningful insights and informed decision-making. 

 

Training of Models is a critical phase in the Model Execution process, where the focus 

shifts to developing and optimising models using training data to learn intricate patterns 

and relationships within the dataset. This phase is pivotal in ensuring the effectiveness 

of the models in making accurate predictions or generating valuable insights. By 

iteratively exposing the models to training data, they learn to discern underlying 

patterns, correlations, and trends, thereby enhancing their predictive capabilities. 

During training, various algorithms and techniques are employed to optimise model 

parameters and minimise errors, ensuring that the resulting models are robust and 

reliable. Moreover, training allows for the exploration of different model architectures 

and hyperparameters, enabling analysts to fine-tune the models for optimal 

performance across diverse datasets and use cases. Ultimately, the training of models 

serves as the cornerstone of Model Execution, laying the groundwork for the 

deployment of effective and efficient AI solutions in real-world applications. 
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Additionally, performance evaluation is a critical aspect of model execution, involving 

the rigorous assessment of the models' performance against predefined metrics and 

benchmarks to gauge their accuracy, reliability, and efficiency. This evaluation process 

is pivotal in ensuring that the models effectively align with the objectives and 

requirements of the task at hand. Given that Model Design shapes the model's 

architecture and ultimate goal during training, it is imperative to evaluate not only the 

model's performance but also its alignment with the task itself. This entails assessing 

how well the model performs in accomplishing the desired task or solving the problem 

at hand. For instance, in the case of the Urban Buildings (UB) pilot, it is crucial to 

evaluate not only the performance of the graph algorithms but also their effectiveness 

in addressing the specific objectives of the pilot project. By evaluating both the 

performance of the model and its alignment with the task, users and developers of the 

models can gain a comprehensive understanding of their capabilities and limitations, 

enabling informed decision-making and iterative refinement. 

Furthermore, another aspect of model execution involves gaining information about 

the inner workings of the models after the evaluation procedure. This is usually referred 

to as the features of interpretability and explainability [18], which play a crucial role in 

ensuring transparency and trustworthiness in the decision-making process of AI 

models, particularly in high-risk tasks where the model's decision has a significant 

impact. These concepts provide insights into the model's decision-making process and 

rationale, allowing users and developers to understand how and why certain 

predictions or decisions are made. By offering transparency into the inner workings of 

the model, interpretability, and explainability not only foster trust among stakeholders 

but also enable the identification and mitigation of biases, errors, and erroneous 

decision-making processes [19], [20], [21]. In high-risk tasks such as those undertaken 

in the Meteogrid project, where the consequences of model inaccuracies can be 

severe, interpretability and explainability become even more critical. They empower 

developers and users to scrutinise model outputs, identify potential weaknesses or 

errors, and take corrective actions to ensure the reliability and safety of the AI-driven 

systems deployed in such contexts. 

3.4 AI Frameworks  

Python [12] serves as the primary programming language for the entirety of the 

experiments, including not only EDA but also model design and execution. This choice 

is made due to Python's readability, flexibility, and extensive ecosystem of libraries. 

Python's intuitive syntax facilitates rapid development and prototyping of scripts, 

streamlining various processes. Additionally, its extensive library support allows 

seamless integration with specialised tools for data analysis, model training, and 

evaluation, enhancing the efficiency and effectiveness of the experimental workflows. 
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NumPy [22] provides essential functionalities for numerical computing, including 

powerful array objects and a collection of mathematical functions. The array data 

structure offered by NumPy enables efficient storage and manipulation of large 

datasets, enhancing computational performance. Its comprehensive set of 

mathematical functions simplifies complex numerical operations, such as statistical 

calculations and linear algebra, essential for thorough data analysis during EDA.  

Pandas [23] is a fundamental library for data manipulation and analysis, offering high-

level data structures and intuitive tools for handling structured data. The DataFrame 

object provided by Pandas facilitates the exploration and manipulation of tabular data, 

enabling seamless data cleaning, transformation, and summarisation. Its powerful 

indexing capabilities streamline data selection and manipulation tasks, while built-in 

functionalities for handling missing data enhance data preprocessing efficiency, which 

is crucial for robust EDA. This is particularly beneficial for every pilot, but it is crucial 

for MTG pilots where the use of NumPy is essential. The ability to quickly calculate fire 

shape descriptors using NumPy's efficient functions gives it an advantage over other 

libraries that lack such a comprehensive and optimised suite of methods. 

Matplotlib [24] is a versatile plotting library that enables the creation of a wide range 

of static, interactive, and publication-quality visualisations. Matplotlib's extensive 

gallery of plot types and customisation options empowers analysts to generate 

insightful visualisations, revealing patterns, trends, and relationships within the data. 

Its integration with Pandas facilitates seamless plotting of DataFrame objects, 

enhancing interpretability and aiding in communication of findings during the EDA 

process. Furthermore, Matplotlib's compatibility with various output formats enables 

easy incorporation of visualisations into reports, presentations, and interactive 

dashboards, enhancing the impact of EDA results. The Matplotlib library enhances the 

ability to utilize more advanced visualization techniques, enabling a thorough 

understanding of the data and results. It also allows for the creation of GIFs (MTG pilot) 

that include both the input and the features. This facilitates both the pilot leader and 

the AI team in inspecting the outcomes of the methodology to identify any potential 

flaws and errors. 

PyTorch [25] is a widely-used deep learning framework that provides tensors and 

dynamic neural networks in Python with strong GPU acceleration. In the context of AI 

projects, PyTorch serves as the backbone for both model design and execution. Its 

flexibility and ease of use make it ideal for building and training complex neural network 

architectures tailored for specific tasks. PyTorch enables researchers to experiment 

with various network architectures, loss functions, and optimization techniques to 

achieve the desired performance. 

PyTorch Geometric (PyG) [26] is an extension library for PyTorch designed 

specifically for handling graph-structured data and implementing graph neural 
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networks (GNNs). In the context of AI projects, PyTorch Geometric allows researchers 

to model and analyse data represented as graphs. This could include social networks, 

citation networks, or knowledge graphs. By leveraging PyTorch Geometric, 

researchers can develop GNN-based models to capture complex relationships and 

dependencies within the data, enhancing the quality of AI-generated outputs. 

NetworkX [27] is a Python library for creating, analysing, and visualising complex 

networks. It provides tools for the study of the structure and dynamics of networks, 

making it valuable for modelling and analysing various types of network data. In the 

context of AI projects, NetworkX can be used to construct and analyse networks 

representing relationships between entities, such as social networks, communication 

networks, or biological networks. By incorporating NetworkX into the workflow, 

researchers can gain insights into the underlying structure of the data and leverage 

this information to design more effective AI models. 

Hugging Face Transformers [28] is a popular library for natural language processing 

(NLP) tasks, providing access to pre-trained models and a high-level interface for 

working with transformer-based architectures. In the context of AI projects, Hugging 

Face Transformers enables researchers to leverage state-of-the-art language models 

for tasks such as text generation, sentiment analysis, or language translation. By 

incorporating Hugging Face Transformers into the workflow, researchers can harness 

the power of transformer-based models to generate high-quality textual outputs and 

enhance the overall quality of AI-generated results. To the best of our knowledge, no 

other library offers as extensive a collection of models and algorithms for natural 

language processing, image and speech modelling, multimodal algorithms, and 

generative networks as Hugging Face Transformers. 
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4 HiDALGO2 HPDA and AI Integration per Pilot 

4.1 Renewable Energy Sources (RES) 

4.1.1 Pilot description 

RES aims at providing different scenarios in the field of renewable energy sources, in 

particular assessing the amount of electrical energy produced by the wind farms, solar 

panels, or to estimate probability of damages which may happen to infrastructure 

(electrical overhead network, PV panels, etc.) due to extreme events (e.g. excessive 

wind speed and gusts). 

As described in D5.3, RES is a multiscale application based on community models: 

WRF [29] and EULAG [30]. There is a one-way coupling from WRF to EULAG, where 

data from finished WRF simulations is used as input for initial and intermediate state 

of EULAG simulation. Both models are storing data in NetCDF4 [31]. 

 

EULAG volumetric output data (tape.custom.nc file) 

The file, written in NetCDF4 format, consists of multiple physical parameters including 

all the saved time steps in a single file. This means that the multidimensional arrays in 

the file are, in fact, time series. The arrays contain values saved for each mesh node. 

The file can be read with the NetCDF4 python library by creating a Dataset object. The 

most important attributes of the object are: 

• dimensions: they contain all the spatial and temporal dimensions to which the 

saved arrays’ shape correspond, for example the number of nodes along each 

axis, like ‘x’, ‘y’ ‘z’ or the number of timesteps (‘time’), 

• variables: here are saved the arrays. For 3D data, like three velocity 

components: ‘u’, ‘v’ and ‘w’, the arrays are 4-dimensional (they include x, y, z, 

and time coordinates). 

The order of dimensions in all the arrays is as follows: array[time, z, y, x] (for 4-

dimensional ones, like ‘u’ or ‘v’). If any of the dimensions is skipped, the order of the 

rest is unchanged (for example array[z, y, x] for ‘imb’). 

What is important, x and y values are expressed in meters and are the result of 

Universal Transverse Mercator projection (UTM) of Earth surface. 

Variables which are the most important for the purpose of analyses done with RES 

are: 

• ‘x’: one-dimensional array of x coordinates along x axis expressed in meters, 

• ’y’: one-dimensional array of y coordinates along y axis expressed in meters, 

• ‘z’: one-dimensional array of z coordinates along z axis expressed in meters, 
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• ‘time’: one-dimensional array of time coordinates expressed in minutes 

counted from the start of the simulation, 

• ‘u’: 4-dimensional array with u component of velocity expressed in meters per 

second, 

• ‘v’: 4-dimensional array with v component of velocity expressed in meters per 

second, 

• ‘w’: 4-dimensional array with w component of velocity expressed in meters per 

second, 

• ‘imb’: 3-dimensional array (x, y, z coordinates) of mesh nodes treated as 

obstacles (immersed boundary method); used just for post-processing of 

images; 0 – not obstacle, 1 – obstacle, 

• ‘pres’: 4-dimensional array with pressure value expressed in Pascals, 

• ‘temp’: 4-dimensional array with temperature value expressed in Kelvins, 

• ‘prec’: 4-dimensional array with precipitation value (the sum of precipitation for 

each time interval, not accumulated) expressed in g/kg. 

 

WRF volumetric output data (wrfout* files) 

Similarly to EULAG, WRF also writes volumetric data to NetCDF4 files. However, the 

main difference is that the data for each timestep is written as a separate file, so the 

arrays inside a single file are no longer time series. The same format is used in the 

Wildfires pilot; thus, a detailed description is omitted here. 

4.1.2 HPDA application 

RES is run daily to produce damage predictions on the electrical overhead network in 

one of the largest Polish cities. Forecasts on the amount of energy produced will be 

run similarly. In either case, the data produced does not require HPDA techniques. 

These will be required once ensemble runs are conducted. The RES pilot plans to run 

ensembles with different sets of parameters – different mesoscale weather prediction 

models, different parametrisation, different input parameters, etc. Ensembles are now 

used in RES damages scenario to check how wind speed and direction affect the 

probability of the damages to the overhead electrical network. For efficient parameter 

value generation and orchestration of ensembles runs within the HPC environment, 

the MUQSA toolkit is used (described in Deliverable D2.1). While it provides basic data 

analytics capabilities, such as calculating the average value of the damages 

probability, a proper HPDA solution is required to analyse dozens and hundreds of 3D 

and 4D data in the most efficient way to provide, e.g. mean results or probability 

distribution. 
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4.1.3 AI application 

RES plans for AI usage concern i) speeding up the simulation by replacing some parts 

with surrogate model (based on AI), and ii) providing new functionality (correlation 

between weather forecasts and amount of produced electrical energy). 

Surrogate modelling 

AI can be used to substitute some parts of the simulations, so that rather than solving 

some equations, an approximate solution can be used with a given accuracy. Figure 

4-1 depicts two different approaches which may be used.  

 

 

Figure 4-1 RES components 

The first approach is to replace the model (or part of it) with a surrogate model. It is 

planned to use EasySurrogate [32], which facilitates the creation of such models. 

Depending on the results, another approach may be used (AI/DNN in the figure). The 

goal would be to use DNN techniques to support the iterative solver - some of the 

iterations are computed by solving the equations. At the same time, some are replaced 

by the DNN, until the desired level of accuracy is reached. 

Energy module 

Applying AI is one of possible techniques to find a correlation between weather forecast 

and amount of electrical energy produced, see Energy module in Figure 4-1. AI can be 

used in a form of predictive model based on the analysis of sequential data, i.e. so-

called time series, to enable more effective forecasting in the field of demand-supply. 

Such information would improve the way the network is managed by energy system 

operators, improve network security and enable the transformation of the network to a 

flexible model, where it would be possible to introduce new prices for energy based on 
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the knowledge of what is happening in the network. Both wind and photovoltaics will 

require separate models. 

The input data (weather forecast) is already available and produced on a daily basis, 

though access to real data for verification is required. The process of obtaining this 

data is ongoing. 

The output data is historical data regarding energy generation. For initial work, 

synthetic data will be used. As of real data, PSNC is finalising the installation of a large 

PV system (almost 1MWp) and will start collecting and storing the data for further 

processing. For wind farms, the data is planned to be obtained through cooperation 

with one of the largest DSOs in Poland. 

The described AI applications have not been implemented yet, as initial examples of 

the provided data were only available within the month of the deliverable's submission. 

Performing EDA is the first next step to be performed in order to facilitate the process 

of realizing the proposed pipelines. 

4.2 Urban Air Project (UAP) 

The HiDALGO2 Urban Air Project (UAP) application provides computational solutions 

for modelling air pollution concentrations and wind-related indicators for urban planning 

at very high resolution (e.g. 1-meter spatial resolution at street level). For a detailed 

description of UAP see the HiDALGO2 D5.3 document. Due to the large scale of the 

problem, high-performance simulations and evaluations are requested, thus we need 

HPC for simulations and HPDA methods for the evaluation of the simulation results.  

Uncertainty quantification, data assimilation of observation and/or external simulations 

data, and real-time processing for emergencies (e.g. when the pollutant is a poisonous 

gas emitted from accidents or intentional harm and urgent response is needed) request 

a significantly faster approximate simulation model for the airflow and the pollutant 

dispersion than the simulation with HPC maybe on the price of reducing some accuracy 

but retaining the most important physical properties. The original computational model 

is often called the full order model (FOM) while the faster simulation is called the 

reduced order model (ROM).  

In this document, we introduce the UAP pilot from the perspectives of creating ROM 

methods by using AI methods.  Fast AI-emulators for the HPC simulations and HPDA 

methods for evaluations of the computational results, either from the HPC simulations 

or from the AI emulators. Also, we shall give the specifications of the AI emulators. 

4.2.1 Pilot Description 

The core of the current UAP simulation consists of computing the urban airflow. The 

other features and user-requested target parameters like air pollution concentration or 

wind-comfort parameters are computed from the urban airflow. In this document we 

focus on the urban airflow computations.  
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For the airflow computations the unsteady Navier-Stokes equations are solved. 

Several solvers are used, namely the OpenFOAM-based pimleFOAM, the RedSIM and 

the xyst. Each solver requests the subdivision of the urban air domain into small 

subdomains called cells, e.g. tetrahedral with edge size of 1-2 metres at urban ground 

level and coarser elsewhere. In total, the airflow domain is subdivided into 1 million to 

100 million cells. For each cell all necessary physical variables (e.g. pressure, velocity; 

the concrete list of relevant physical variables depends on the applied physical model 

and its approximating numerical method) are computed in each time-step, sometimes 

the variables assigned to the entire cell, or the edge of the cells, or the vertices.  

Thus, for each time step, we compute a vector of N physics-related variables by FOM, 

called state-variables in internal formats. The vectorization of physical scalars is done 

in a fixed way, e.g. in the order of the cell numbers with a given order of the physical 

variables. Under a certain strategy, we sample M state-variables from the FOM 

simulations and store them in the so-called snapshot matrix X. The physical time points 

belonging to the sampled variables are stored in the vector time, in the same order as 

the state-variables are stored in X. The concrete set of input parameters for the FOM 

are saved in a configuration file and some parameter files; the input parameters in the 

configuration file do not change in the construction of the ROM while the values in the 

parameter files are subject to change. For example,  

• in the configuration file conf we fix the city geometry, the city mesh containing the 

cell information, parameters of the applied numerical scheme under the FOM, and 

the weather data that we do not change, 

• in the parameter file parBC we store the boundary conditions for the FOM that are 

subject to change for the training of the AI-emulator, typically the wind boundary 

conditions. The wind boundary conditions are stored in a CSV-file: wind velocity 

coordinates at reference boundary points are saved. 

• In the parameter file parIC the state vector belonging to the initial time is stored. In 

the header of the file, the physical time to which the initial state vector belongs is 

stored. 

• Optionally, parOBS may store observational values belonging to the FOM if any. In 

the current version of UAP we do not use this  

When saving the results of more than one FOM simulations, the number of simulations 

is saved to each file, thus conf, X_1, time_1, parBC_1, parIC_1, X_2, … are used. 

 

4.2.2 HPDA application 

According to EU directives, the pollution load in a city is quantified by yearly average 

values of hourly measurement data. This assessment is also possible using modelling 

and simulation. Long-term pollution spread simulation data, however, is extremely 

large. Even for moderate-size (a few million cells) meshes, the data volume is about 
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100GB for one month and 1 TB for one year if sampled per hour. While on-the-fly post-

processing makes the most sense, as analysis at a more refined time scale would 

make sense and the sampling method would not require that kind of storage space, 

the need arises for analysing the data post-simulation. 

4.2.2.1 Methods of HPDA analysis 

The post-simulation analysis will encompass various methods to measure and assess 

data across specified locations and dimensions. Initially, point sampling will be 

conducted at predefined locations, such as monitoring stations. This will be 

complemented by surface sampling, which will be executed on both flat and uneven 

surfaces within designated areas, for instance, at an inlet or a specified height above 

the ground. Additionally, volumetric sampling will measure the total amount of pollution 

within the city, and line sampling will quantify pollution along pedestrian pathways. 

The results of these analyses will be presented primarily in the form of time series data. 

This will include time series for specific values, such as pollutant concentration 

behaviour at monitoring stations, and for weighted values, such as the outflux of 

pollutants from city areas. Moreover, the data will be analysed to determine averages, 

minimums, maximums, and spreads, such as the daily average concentration of 

pollutants at two meters above ground level. Further analysis will involve calculating 

moving averages, as well as ongoing minimum and maximum values. 

  

Regarding the methodology of sampling, the analysis will employ various approaches 

to ensure accuracy and comprehensiveness. This will include using the nearest 

neighbour or an average of nearest neighbours for point-specific data, averaging from 

points within a given radius for area-focused data, and range-dependent weighted 

averaging to take into account the distance effects on sampling points. Additionally, 

the analysis will calculate the minimum, maximum, and spread within each range to 

provide detailed statistical insights. 

4.2.2.2 The HPDA analysis workflow 

While it is generally good to have a brute force analysis tool, it is preferred to have a 

reasonable method to avoid reading all the data and getting an accurate enough result 

by looking at a fraction of the input. Moreover, it is reasonable to check if climate and 

weather conditions relate to the relevant time sample window. Additionally, the creation 

of a proper data analytic workflow would be beneficial: 

1. Given yearly weather and climate data within a city, which time intervals are to 

be simulated to get results within a specific accuracy? 

2. Given results with a specific accuracy, what new time intervals are to be 

simulated to get results within an improved accuracy? 
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3. Given a new city geometry and long-term climate data, what are the appropriate 

analytic steps for preparing analysis (1) and (2)? 

4.2.2.3 Input format for HPDA 

The current data is available in Ensight Gold format (see section 11.1 in [33]). Data is 

stored in binary per node. One month is stored in one case directory. Time is indexed 

in seconds, beginning at the start of the specific month. Velocity (U), pressure (p) and 

the pollutant NOx (nox) are stored. Time stamps are shifted with the number of 

iterations for calculating the steady-state initial condition (600). 

4.2.2.4 Output format for HPDA 

To fully leverage the capabilities of data analytics, it is advantageous to employ both 

value-based and plot-based results. For value-based results, presenting data in a 

dataframe format is preferred as it facilitates further analysis and interpretation. This is 

particularly useful for handling large datasets where efficient manipulation and analysis 

are required. 

  

For plot-based results, which are essential for visualising patterns and trends, different 

types of plots are recommended depending on the analysis type. Time series analysis 

of derived data is best represented through appropriate plots that highlight changes 

over time. Heat maps or scatter plots are suitable for representing statistics of surface 

sampling, providing a visual representation of data variability and density across a 

defined space. Additionally, plot series are effective for detailed time series analysis of 

surface samples, allowing for a dynamic exploration of temporal changes in the data 

collected. 

To fully benefit from data analytics, both value-based and plot-based results are 

preferred: 

1. Dataframe format is preferred for value-based results to facilitate further 

analysis. 

2. Appropriate plots are preferred for time series analysis of derived data. 

3. Heat maps or scatterplots are preferred for statistics of surface sampling. 

4. Plot series are preferred for time series of surface samples. 

 

4.2.3 AI application 

As introduced in Section 4.2.1 above, the UAP FOM simulations are described by a 

set of snapshot series S_conf = [X_1, time_1, parBC_1, parIC_1, …].  

The task for an AI application is to train such an emulator based on S_conf that enables 

to predict X from a suitable time, parBC and parIC parameters. 
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The construction of such emulator is the task of the next periods of the project. A set 

of concrete conf and S_conf has been generated. Also, a test-set generator has been 

implemented, too. 

One special case of this general AI-problem has been implemented for RedSIM, 

namely the POD and the POD-DEIM methods. In POD, the Proper Orthogonal 

Decomposition method, a projection is defined based on S_conf, and then the FOM is 

applied in the projected space. Here the projection is defined by the truncated U_r 

matrix from the left-singular vectors belonging to the singular value decomposition of 

the [X_1, X_2, …] matrix as the projector. Alternatively to the AI-task above, we may 

train an emulator in the projected space. However, this is a special case of the above 

defined AI-task when we set up an autoencoder for the first layers of a neural network 

used to train the emulator. 

We shall report the results of the AI-task in subsequent reports of the projects. 

 

4.3 Urban Building (UB) 

4.3.1 Pilot description  

The Urban Buildings (UB) pilot’s objective is, as stated in D5.3, to provide tools to 

accurately predict energy consumption, thermal comfort, and indoor air quality both at 

the building scale and at the urban scale.  

Currently, the UB application can generate data concerning the heat flux and 

temperature of the building's surfaces in both Level of Detail (LOD)-0 and LOD-1 

geometries. As solar masks are computed and used to calculate such outputs, they 

can also be returned by the simulation. Additionally, a discretisation of the city’s 

geometry is available in conjunction with its geographic information in msh [34] and 

GeoJSON [35] file formats, respectively. The full documentation of the produced 

dataset is provided in Annexes: UB Simulation Output Data Description. 

 

4.3.2 HPDA application 

The simulation at the city scale needs to be analysed at various scales (district and 

city) and described with proper statistical data that are collected in an automatically 

generated comprehensive report. These data could also be visualised meaningfully 

using info-visualization [36]. Solar masking analysis generally involves assessing the 

shading created by elements of the urban landscape, such as buildings, trees, 

structures and other physical features.  

An initial approach to this pilot was attempted using a sample dataset containing Solar 

Masks of buildings in Faches-Thumesnil, France. The HPDA development team 

conducted a round of exploratory analysis with a particular focus on the implementation 
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of the Density-Based Spatial Clustering of Applications with Noise (DBScan) clustering 

algorithm. The primary objective was to evaluate the algorithm's performance and its 

ability to reveal meaningful insights within the dataset. 

 

Data transformation  

The sample dataset includes solar masks for around 1000 buildings in Faches-

Thumesnil, France. It comprises 5375 CSV files, each corresponding to a building face 

or roof of a building, with each file containing 72 rows and 10 columns. We flattened 

the contents of these files to a vector of 720 features. The final dataset, which was 

used in the methods described next, was obtained by piling the vectors for all building 

faces. It consists of 5375 rows x 720 features. In the final dataset, each row refers to 

a specific building face. 

 

Design and Implementation 

Our first thoughts regarding possible applications that could make use of the sample 

data were focused on trying to classify the various building faces. Our initial expectation 

was that the application of a classification algorithm would reveal some patterns or 

information hidden in the data. To test this hypothesis, we decided to utilise the 

DBSCAN [37] algorithm, which has the ability to identify clusters of data-points and 

assign each datapoint to either one of the clusters or a “noisy” set, which is treated as 

a group of outliers. 

Density-Based clustering was applied using the scikit-learn library in a single-node 

Python environment. A series of experiments were performed that varied the 

parameters eps (minimum distance between two samples for neighbourhood 

consideration) and minPts (minimum number of neighbours within eps radius). These 

experiments aimed to determine optimal clustering configurations as evidenced by the 

number of clusters, quantity of noise points (rows not belonging to any cluster), and 

Silhouette Coefficient (ranging from -1 to 1, where values close to 1 indicate well-

defined clusters). 

 

Findings and next steps 

Upon careful analysis of the clustering experiments using the DBSCAN algorithm, it 

was deduced that the outcomes predominantly illuminated the primary orientations of 

buildings in the Faches-Thumesnil district. This revelation, while insightful, was not 

aligned with the practical objectives of the project. Recognizing the limited applicability 

of these findings, the team convened to reassess and refine the project's goals. This 

collaborative effort led to a redefined task with a clearer focus.  

 

We identified the need for a more detailed dataset, which would be augmented with 

more features – including geographical information about the relative locations of 
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buildings in the urban environment. Our goal is to make it possible to identify the areas 

that benefit from maximum sunlight and those that are likely to be shaded at different 

times of the day and year. This identification can be proven fruitful for the following use 

cases.  

 

1. A notable use case is identifying overexposed buildings and neighbourhoods to 

be used as a target for placing solar panels. Not only will this enable the 

orientation and tilt of solar panels to be optimized to maximise their exposure to 

the sun for improved energy production, but it will also enable precise town 

planning decisions.  

2. On the same topic, identifying underexposed building groups can grant major 

insights into preventing health issues or other sorts of impact on the occupants. 

Additionally, targeting underexposed areas may be useful for optimising energy 

efficiency and predicting possible deterioration of the structures. 

3. Finally, clustering buildings based on sun exposure and temperature can 

contribute to identifying possible unoptimised structures. It can also help in 

detecting zones that require more attention concerning indoor comfort, as well 

as energy optimisation. This use case can serve as a good indicator for urban 

planning strategies to identify the more suitable locations for development.  

  

4.3.3 AI application 

Description of the use case 

Shading from surrounding buildings impacts the amount of solar energy that hits a 

target construction, which leads to modifications of temperature, humidity or incident 

light. The purpose of this use case is to quantify the variation, caused by a new 

building, on the solar intake and solar masks of the surrounding area.  

 

Status of the collaboration/ Methods 

The problem is tackled using supervised learning. Presently, a graph is associated with 

the city landscape: nodes correspond to buildings and edges correspond to the relation 

“building 1 shades building 2”. The objective of the training is to predict which edges 

are activated, hence which buildings are shaded by a given one. 

The training of the neural network is performed over a custom dataset that UNISTRA 

has provided. This dataset contains one folder per building, where the solar masks that 

are stored are computed in the absence of this specific building. We stress that not all 

the masks of all the buildings are stored in each folder, only those whose values are 

modified by the absence/presence of the building under examination. Hence, it is 

necessary to provide also the “full” dataset where all the masks are computed in the 

presence of all the buildings. 
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NOTE: The code for the generation of the dataset one-building-out is to be found in 

the solar-shading repository, on branch 40-compute-shading-masks-when-a-building-

is-absent. The generation of the “full” dataset can be obtained using the code in the 

master branch. However, the AI analysis should now use the new solar mask 

generation. 

It is crucial to recognise that each building presents a unique solar mask for every 

surface it comprises. The central aim of our endeavour revolves around the 

determination of how solar masks evolve following the construction of a new building. 

While this scenario is relatively uncommon in bustling city centres, where new 

constructions are infrequent, it becomes a more prevalent occurrence in suburban 

landscapes. As of now, our analysis does not encompass the influence of factors such 

as vegetation or other minor parameters that might have the potential to impact the 

values of solar masks. These considerations may come into play as we delve deeper 

into understanding the dynamics of solar masks and their changes in response to 

evolving urban environments. 

 

Given the dataset at hand, our attention is directed towards visualising the topological 

arrangement of the buildings. These structures are interconnected with neighbouring 

constructions via various relationships, such as their proximity and the shading they 

provide for one another. Therefore, representing them as a graph emerges as the most 

logical approach. However, the creation of this graph necessitates careful 

consideration of which relationships should be depicted as edges and which attributes 

of the buildings should serve as node features. 

 

 

Figure 4-2 Affected Buildings Network creation. A simple Proximity Network versus an Affected 
Buildings Network. The process of iteratively adding edges to create the Affected Buildings 

Network is described on the right side of the figure. 

By leveraging building affectedness as edge information, where buildings are 

connected only if the deletion of one affects the solar mask of the other, we can 

construct an affected buildings network (Figure 4-2). This network exhibits high 

irregularity in terms of edge distribution and may be either directed, with directions 

pointing to the surrounding affected buildings, or undirected. 

An initial examination of this network reveals its density, with some edges existing 

between buildings that are not nearby. This unexpected observation stems from the 
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consideration of even minute changes in solar masks during dataset creation. To 

provide a more realistic depiction of the network, we propose establishing a threshold 

for solar mask difference before and after building deletion (Figure 4-3). Following 

experimentation, the threshold value was determined to be greater than or equal to 

0.01 of the mean squared error of the pixel values of the original and modified solar 

masks. The depicted graph reflects the notion of expected proximity between co-

affected buildings and is also not overly dense. 

 

 
Figure 4-3 Depiction of the Affected Buildings Network with Threshold 

 

After the creation of the affected buildings network, the graph representation is utilised 

to train a neural network for predicting edges between buildings, a task known as Link 

Prediction. This process involves training a Graph Neural Network (GNN) to learn node 

embeddings and predict the existence of edges between nodes. GNNs are the most 

commonplace choice for tasks on graphs, with link prediction being one of the tasks 

they tackle the most. GNNs are fairly lightweight networks; they are not based on 

computationally intensive techniques like attention-based transformers and are 

generally shallow yet effective. 

 

The methodology employed can be outlined as follows: 

• Data Preparation: 

o A portion of existing edges are removed, keeping all present nodes 

(buildings). 

o The remaining graph is fed through a Graph Neural Network (GNN) for 

training. 

• Model Architecture: 

o A two-layer Graph Convolutional Network (GCN) [38] is employed to 

encode the graph's nodes through message passing  [39]. 
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o The decoder part of the network, responsible for binary classification of 

the existence of an edge between two specific nodes, is treated as a 

hyperparameter. 

• Experimental Settings: 

o Explored settings include: 

o Structure of the graph: directed vs undirected 

o Classifier type: Simple Dot Product vs MLP [40] 

o Node features: Building location vs building height 

o Threshold on solar mask difference 

 

 

Table 4-1 presents the Area Under the Curve (AUC) of transductive Link Prediction on 

the affected buildings network for initial experiments, providing a reliable measure of 

the model’s performance often used in relevant literature [41]. Results are provided for 

both the configuration that leverages a threshold for the solar masks, as well as not, 

for direct comparison. Higher ROC AUC scores denote better performance. 

Percentages highlighted in bold indicate best results per column. 

 
Table 4-1 Initial test AUC scores on affected buildings prediction, on graph with edge threshold 

versus no threshold. 

 Test AUC  Test AUC (with threshold) 

Height 
Information 

Topological 
Information 

Height 
Information 

Topological 
Information 

Undirected Graph + 
Simple Classifier 79.2 80.9 71.3 71.6 

Directed Graph + 
Simple Classifier 77.0 74.4 69.8 64.9 

Undirected Graph + 
MLP Classifier 74.6 75.1 65.9 78.4 

Directed Graph + 
MLP Classifier 71.6 74.9 55.6 77.5 

 

We also provide training loss diagrams for all reported experiments (Figure 4-4). The 

decent of the loss function, which in all cases reaches a value very close to 0, 

combined with the elevated test set ROC AUC scores prove that the models were able 

to fit the data. 
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To explain and elaborate upon the provided results: 

• The majority of configurations for GNN models yield high AUC scores 

(exceeding 70%), even in preliminary experiments that have not undergone full 

optimisation yet. 

• Initial results indicate trends: 

o Building location as a feature is more informative. 

o Undirected graphs tend to yield better performance. 

• Despite lower AUC results for thresholded cases, the predicted affected 

buildings correlate better with proximity, indicating promising results. 

 
Figure 4-4 Training losses on affected buildings prediction, on graph with edge threshold 

versus no threshold. 

Further optimizations on the GNNs will be conducted in the future. However, the initial 

findings support the hypothesis that building location features and undirected graphs 
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contribute to better performance in transductive Link Prediction tasks on affected 

building networks. 

Analysing graphs and employing GNN models offer an additional advantage. During 

training, the generation of node embeddings to improve link prediction reflects the 

similarity between nodes/buildings. Consequently, our current efforts can be expanded 

to accommodate inductive scenarios in the future, such as predicting connections for 

buildings absent in the original graph. Moreover, comparing graph embeddings is 

pertinent for explainability techniques, a crucial aspect for contemporary AI 

applications where models are frequently opaque [19]. These efforts could serve as a 

blueprint for enhancing the explainability of our approach in the future. 

4.4 Wildfires (WF) 

4.4.1 Pilot description 

The Hidalgo2 project aims to explore the use of HPC facilities to address environmental 

challenges resulting from climate change. Among these challenges, forest fires are a 

growing concern for administrations, emergency response agencies (fire-fighters, civil 

protection), and the population. Recent events in Greece (2023), the United States 

(2023), and Chile (2024) highlight the need to characterize the territory regarding its 

sensitivity to these highly destructive and deadly events. 

The fire-atmosphere interaction is increasingly relevant in a type of fire that goes 

beyond fire-fighting capabilities and poses a risk to both responders and the 

population. This interaction is complex, dynamic, and occurs in three-dimensional 

spaces that are challenging to model with numerical solutions. Given the importance 

of the issue, a large number of researchers have focused on trying to characterise the 

dynamics of ignition, consolidation, and propagation of fire fronts and their interaction 

with the atmospheric boundary layer—essentially, the lower layers affected by these 

powerful disturbances. Indeed, more energetic forest fires inject energy and a 

significant amount of gasses, particles, and water vapour, altering the local circulation 

of the atmosphere. In the most dramatic cases, these disturbances create convection 

cells that induce winds dragging the fire itself, thus creating feedback phenomena that 

are challenging to control. It is also relevant to consider the production and dispersion 

of smoke, which often affects urban areas that are sometimes located far from the main 

front. 

The numerical simulation of these phenomena is complex and computationally 

expensive. Computational Fluid Dynamics (CFD) models rely on three-dimensional 

grids of small cells for which the equations governing the movement are calculated. 

The good news is that these computational methods are highly parallelisable and 

scalable, making them perfect candidates for application on HPC architectures. One 

of these solutions, WRF-SFIRE, has been developed and extensively tested over the 
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last decade and adopted for the pilot study of forest fires in Hidalgo2. Installed and 

tested on various EuroHPC JU facilities (Vega, LUMI, MeluXina), MeteoGrid has 

conducted simulations of some of the most relevant fires in the central region of Spain, 

for which there is sufficient documentation. 

Despite all these advantages, applying fire simulation for operational purposes on HPC 

facilities is a significant challenge: data capture, pre-processing, and final computation 

can take several hours, even with the most powerful facilities. Therefore, it is necessary 

to work with pre-computations of all possible scenarios in indexed ensemble sets, 

which can be accessed on demand in the operational phase in just a few seconds. 

This approach requires the precise characterisation of all possible meteorological 

scenarios in which forest fires can occur in an area, including wind speed and direction 

and the moisture conditions of forest fuels. It is also necessary to simulate fire spread 

from all possible points of origin (initial ignition points) in the study area. This involves, 

through the combination of factors, several tens or hundreds of thousands of 

simulations that must be stored efficiently and accessed practically instantaneously. 

These simulation ensembles serve not only as massive datasets for training AI engines 

to find relationships between real and simulated fires but also enable High-

Performance Data Analytics (HPDA) for studying landscape sensitivity to factors and 

processes governing forest fires. One of the classic HPDA approaches involves 

clustering all simulations obtained into ensemble sets and calculating statistics to 

obtain, for example, the Burn Probability (BP) at each point on the territory. In the 

HIDALGO2 project, similar analyses are proposed for the probability of smoke passage 

due to forest fires, namely the Smoke Probability (SP). 

The fire simulation ensembles comprise sets referring to various changing factors, 

such as wind speed or direction (atmospheric configuration) or the position of the fire's 

origin on the territory. Typically, ensemble simulations are conducted by integrating a 

wrapper responsible for varying the conditions and launching the simulations to the 

calculation engine it includes. The results are written in separate files, and, as a 

complement, statistics are generated for data analysis. 

In the pilot study of forest fires, ensemble sets of simulations have been developed to 

establish a database for subsequent use in AI inference engines through similarity and 

to conduct high-performance data analysis (HPDA) of landscape sensitivity to forest 

fires. For this purpose, a study area near Barcelona, Spain, has been selected, which 

has been analysed on previous occasions and for which there is a good set of baseline 

data (Annexes: WF Simulation Output Data Description). 

4.4.2 HPDA application 

A typical application of data analysis for characterising the sensitivity of the territory to 

forest fires is the so-called Burn Probability (BP), whose expression is: 
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𝐵𝑃 = 100 ∙
𝑁𝐹

𝑁𝑆
 

Where: 

  

𝐵𝑃 Burn Probability, expressed in % 

𝑁𝐹 Number of times fire passes through a point in the territory 

𝑁𝑆 Total number of ensemble simulations 

 

In HiDALGO2, it is suggested to use this BP index coupled with the presence of 

buildings, roads, and other potentially vulnerable infrastructures associated with the 

population in the landscape. This way, it is possible to calculate the probability of 

undesired impacts and refer it to a risk map. 

Furthermore, it is suggested, in a novel manner, to apply the same concept to ground-

level smoke intrusion resulting from all possible simulated forest fires in the ensemble, 

given a threshold value of the traced pollutants (especially suspended particulate 

matter PM10 and PM2.5) set according to health impact criteria for the population. The 

resulting value will again be combined with the distribution of buildings, road networks, 

and other population-related infrastructures, as well as the average population density 

in the study area. This could serve as an indicator of risk due to the probability of 

pollutant presence in populated areas. A sample of a possible expected output, 

visualised on a map, is displayed in Figure 4-5. 
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Figure 4-5 An example of a typical HPDA analysis using Burn Probability (%), resulting from 
the overlap of all simulations performed in the mentioned Rectoret and Les Planes study case. 

The areas in red indicate a higher likelihood of fire spread. 

 

4.4.3 AI application 

Performing a large number of simulations in advance allows, on one hand, to train an 

AI engine to find patterns and thus quickly characterize the fires that occur later in the 

real world. On the other hand, it is possible to establish a database of indexed 

simulations according to the factors that govern them to subsequently use them for 

operational purposes. 

The strategy for using these simulations in the operational phase is conceptually 

straightforward: the progress of a real-world fire is detected, and its perimeter is 

captured through satellite or aerial photography. This perimeter, along with the point 

of origin, is used in an AI engine to, through a shape similarity analysis and based on 

actual meteorological conditions, search for and extract the pre-calculated simulations 

that most closely resemble the observed fire. This process requires a detailed 

description of the fire shape using shape indicators, which undergo a similarity 

analysis. If no reasonably similar simulation is found, the new situation is computed 

and added to the simulation database for subsequent use. As can be seen, it is 
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necessary to train an AI engine with thousands of simulations to extract patterns about 

the shapes that can then be easily identified in the case of real fires. 

Specifically, the proposed procedure for the application of AI engines for the search 

and discovery of the closest simulations is as follows: 

 

• A real fire is developing and the fire front position is captured at a certain time 

(i.e. using satellite-borne sensors MODIS, SUOMI etc.) 

• The shape of the current fire front is extracted from the active (burning fires) 

• The descriptors of the shape are calculated for the given time 

• Other variables are also considered for the analysis: wind speed, wind direction 

and coordinates of the point of origin (if known) 

• A search and discover algorithm is applied to a large database of simulations, 

in which the same shape descriptors and the other variables are the associated 

indexes. This applies similarity routines to extract the simulations that are 

closest to what has been observed at the given time. 

• The extracted pre-calculated simulations, provide a frame for the projection of 

the expected fire behaviour, which is rendered instantly. 

• If the similarity analysis fails to find a simulation, the system suggests to proceed 

with the simulation and include it in the database for future use. 

 

Wildfire shape descriptors 

To proceed with the similarity analysis, it is the proposed method for obtaining basic 

descriptors of fire spread shapes, namely: 

• From the simulation 2D grid storing the fire access time, extract the desired 

contour corresponding at a certain time of simulation. 

• Calculate the centre of gravity of the resulting shape 

• Calculate the oriented minimum bounding box (use rotating callipers method) 

• Extract major and minor axes (named as Length and Width) 

• Extract orientation of major axis (it will be the general main propagation 

direction) 

• Derive eccentricity (length-to-width ratio) 

• Calculate the moment of inertia of the shape referred to as the major axis 

  

The proposed shape descriptors used for similarity analysis are: 

• Total area enclosed by the shape 
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• Total length of shape perimeter 

• Eccentricity 

• Orientation angle 

• Moment of inertia 

 

The initial stage in developing the AI similarity model involves conducting an 

Exploratory Data Analysis (EDA) to gain a comprehensive understanding of the 

dataset. To achieve this, we begin by extracting the relevant features for each time 

step of every fire. Specifically, Figure 4-7 and Error! Reference source not found. 

illustrate the evolution of these features for a single fire, with the objective of gaining 

insight into the ability of the handcrafted features to properly describe the evolution of 

a fire. The evolution of the fire, along with the evolution of the handcrafted features for 

a set of fires, is also exported in GIF format to a dedicated data repository. An instance 

of these GIF files, featuring the forest fire, along with the shape descriptors, is depicted 

in Figure 4-6. 

 

Figure 4-6 An example of forest fire spread shape descriptors extraction, as applied to the 
simulations ensemble of Rectoret area. 

 

Studying Figure 4-6, we can make several observations. First, the centre of gravity of 

the contour, indicated by a red dot, differs from the centre of the bounding box, marked 

by a green dot. These two features represent distinct characteristics of the fire. 

Additionally, as mentioned in section 3.2, the definition domains of these features vary 

significantly. For example, the total area of the bounding box is approximately 115,000 

square meters, while the angle is only 59 degrees. To prevent the similarity algorithm 

from overly focusing on the area – due to its large values – normalisation is crucial. In 
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Figure 4-7 and Error! Reference source not found., the width and height of the 

bounding box are measured not in actual meters but in pixel counts. This approach 

was chosen to enhance our understanding of the differences between the features 

when they are counted in the image of the actual fire. All calculations will utilise the 

features of the actual fire. 

 

Figure 4-7 illustrates the development of features in a fire simulation. Initially, as 

expected, the “Area” increases consistently over time. However, this is not always the 

case. For instance, if the fire is temporarily contained, the area will decrease before 

increasing again. Additionally, the steepness of the line indicates the growth rate of the 

fire. Also, the behaviour of the “Rotation” in the fire simulation does not align with 

expectations. For example, at timestep 100, the noticeable spike in rotation is not due 

to an actual change in the fire itself, but rather because the “Height” and “Width” of the 

fire altered, as shown in Figure 4-7 titled "Evolution of 'Width' and 'Height'." Despite 

this anomaly, the rotation generally exhibits a smooth transition over time. This 

consistency is also observed in the "Imajor" and "Eccentricity" features of the simulation. 

Similarly, the “Width” and “Height” of the fire, like the “Area”, have shown a steady 

increase. However, the “Height” increases more rapidly than the “Width”, leading to 

swapping of values in these features around the 100th timestep. Lastly, the “Center of 

Gravity” proves to be a valuable feature, as it correlates with the overall direction of the 

fire. Initially, the fire progresses linearly in both x and y coordinates, but then it shifts 

direction primarily in the x-axis, repeating this pattern later on. 

 

Figure 4-7 illustrates the evolution of the six features: “Area,” “Rotation,” “Imajor,” 
“Eccentricity,” “Width,” “Height,” and “Center of Gravity of the contour” for each timestep. 
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Error! Reference source not found. illustrates comparable metrics for an alternate 

fire simulation, demonstrating consistent behaviour within the fire's area, marked by a 

steady increase. Notably, around the 100th and 150th timesteps, there is a rapid 

expansion of the fire. This quick growth is clearly represented in the "Area" graph by 

the steepness of the line. Also, the parameters “Rotation”, “Imajor”, and “Eccentricity” 

exhibit numerous spikes. These fluctuations are primarily attributed to changes in the 

“Height” and “Width” characteristics, which define specific features of the fire's 

behaviour. Additionally, by analysing the “Center of Gravity”, the progression of the fire 

can be predicted, initially rising along the y-axis before descending. 

 

 

Figure 4-9 illustrates the evolution of the feature “Area” across 10 different fire 

simulations. By analysing the development of the areas affected by the ten fires, it is 

possible to observe variations in how these fires evolved. Some fires exhibited rapid 

growth, while others spread much more slowly. This comparison highlights the diverse 

behaviours of wildfires in different conditions. 

 

Figure 4-8 illustrates the evolution of the six features: “Area,” “Rotation,” “Imajor,” 
“Eccentricity,” “Width,” “Height,” and “Center of Gravity of the contour” for each timestep. 
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Figure 4-9 The evolution of the “Area” across ten different forest fires. 

Observing the diverse trajectories of handcrafted shape descriptors among these 

forest fires, we notice that each fire follows a unique path. This uniqueness can be 

advantageous for identifying the fire’s evolution based on these features. However, it 

also poses a challenge when attempting to find similar fire simulations for a new fire. 

To delve deeper into the distinctiveness of each fire, we employed Principal 

Component Analysis (PCA) to reduce the fire’s dimensionality for visualization. 

Figure 4-10 displays the outcomes of the PCA analysis. The left panel shows PCA 

features color-coded by the fire simulation filenames, whereas the right panel color-

codes them according to the timestep from which each vector was extracted. Notably, 

the fire data consistently aligns along a linear trajectory, signifying close proximity 

among the features extracted at each timestep. Interestingly, the lower and central 

parts of the diagram show a distinct cluster of points, as indicated in the right figure 

where blue points represent the positions at timestep zero. Further analysis reveals 

that these points precisely correspond to the features extracted during the initial 

timestep of each fire simulation. 
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Next Steps 

Our initial analysis using handcrafted features provided valuable insights. While it 

confirmed the potential for fire identification based on these features, the observed 

uniqueness of each fire challenged finding similar simulations. PCA revealed strong 

correlations between features, suggesting redundancy and a distinct cluster for initial 

stages, highlighting their unique characteristics. 

 

The next steps to enhance the similarity algorithm consist of: 

 

1. Trainable Similarity Measure: Move beyond handcrafted features to trainable 

similarity measures that learn optimal feature weightings based on a pre-defined 

evaluation metric, such as the accuracy of predicting fire spread. This dynamic 

approach allows the model to prioritise features most relevant to specific fire 

behaviour comparisons. By constantly refining these weights, the model can 

achieve more accurate and context-specific fire simulation comparisons. 

2. Feature Extraction using classical Computer Vision techniques: Use 

computer vision techniques to extract additional features capturing visual 

aspects like flame shape, smoke patterns, and fire intensity variations. These 

features can provide a richer picture of fire behaviour that goes beyond the data 

captured by the current set. By incorporating these additional features, the 

model can develop a more nuanced understanding of fire dynamics and how 

they evolve over time. 

3. Terrain Information Integration: Fire spread is heavily influenced by the 

surrounding environment. Integrating information extracted from the terrain, 

such as slope, vegetation cover, and fuel load, could significantly enhance the 

model's ability to predict fire behaviour. Imagine a scenario where a fire starts 

Figure 4-10 The results of PCA for each timestep of fire simulation. 
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on a steep slope with dry brush – the model, considering this terrain data, could 

predict a faster and more aggressive fire spread compared to a scenario on flat 

terrain with moist vegetation. Considering these factors alongside the fire data 

itself, the model can build a more comprehensive picture of how a fire might 

evolve within a specific environment. This can lead to more accurate and 

informative fire simulations, ultimately allowing for better fire management 

strategies, resource allocation, and potentially even earlier intervention during 

real-world fire events. 

4. Integration of Multimodal Information: The incorporation of multimodal data 

into the search algorithm represents a potential next step. This data, which 

combines handcrafted information with images of the fire and terrain, may be 

utilized. Through this approach, information concealed within the terrain and the 

fire, along with the handcrafted features, could be integrated into a single 

pipeline. This integration aims to extract higher-level features of the fire by 

leveraging all available information. 

5. Integration of Generative Models: Another possible advancement involves 

the employment of generative models to optimize a hidden representation of a 

wildfire. For instance, by utilizing a generative model that mimics the fire's 

evolution, a hidden representation of the model for an individual fire can be 

exported and potentially used in the search algorithm. Additionally, the use of 

Large Vision Language Models (LVLMs) could be explored to generate a 

semantic description of a fire in natural language, which might also be 

incorporated into the search algorithm. 

By implementing these proposed next steps, we aim to develop a more robust and 

informative AI similarity model for fire simulations. This enhanced model will leverage 

the power of trainable similarity measures, additional features extracted using 

computer vision techniques, and terrain data to provide highly accurate and insightful 

comparisons between fire simulations. This will ultimately contribute to improved fire 

prediction, prevention, and control efforts, leading to a safer future for communities and 

ecosystems. 

 

4.5 Material Transport in Water 

Environmental processes often involve complex interactions between fluids, solids, 

and gases. One example is sediment transport in rivers that is also impacted by 

pollutant transport and temperature effects. 
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4.5.1 Pilot description 

For the multi-physics simulations, we use the waLBerla framework 

(https://walberla.net/) that is based on the Lattice Boltzmann Method for computational 

fluid dynamics and applies the MESA-PD module for particle simulations based on the 

discrete element method. As finite element based software we apply HyTeG 

(https://hyteg.pages.i10git.cs.fau.de/hyteg/index.html). Pollution is modelled by a 

concentration field and treated numerically by either an explicit or implicit solver.  All 

physical models are fully coupled. In Hidalgo2 the main goals are to improve 

performance portability and scalability of the simulations and to investigate different 

possibilities for coupling the different models and software packages.    

4.5.2 HPDA application 

Usually direct numerical simulations (DNS) on a small volume fraction of the riverbed 

are performed. Large-scale runs may contain 10^11 or more particles. As input data 

e.g. the shapes, initial positions, and velocities of the particles are required. Output 

data is stored either as raw data or VTK files. It contains for example time-dependent 

fluid velocities and density, particle positions and velocities, and resolved 

concentrations.  

There will be only a limited number of large-scale runs due to the huge memory and 

compute time requirements. We perform in-situ data analysis and data compression 

during the simulation. A proper HPDA solution is required to analyse the huge amount 

of  data in the most efficient way to provide, e.g. mean results or probability distribution. 

4.5.3 AI application 

Similar to the RES pilot, we envision to investigate the accuracy of AI based surrogate 

models to approximate the DNS for larger simulations. This could reduce the required 

runtimes drastically. The idea is to predict future timesteps by AI models based e.g. on 

vision transformers trained on simulation data to be able skip or enlarge the timesteps 

during the simulation. 

 

    

  

https://walberla.net/
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5 Adaptation to HiDALGO2 resources 

The initial phase of the HiDALGO2 project involved conducting various preliminary 

experiments. At the time of preparing this deliverable, these experiments were 

performed using computational resources available to ICCS. This decision was 

primarily due to the convenience it offered during the initial stages of data exploration 

and algorithm development. Utilising these resources at this stage allowed for greater 

flexibility and a faster iteration process as the team navigated through the complexities 

of the data and refined the algorithms used in these experiments. 

It is important to note that the data exploration algorithms employed in this phase are 

generally lightweight and do not require substantial computational power. Additionally, 

the GNNs used are also designed to be efficient.  

Despite the initial use of more accessible computational resources, the project is 

poised to scale significantly. The next step for the AI/HPDA team is to transition the 

experiments to the HiDALGO2 project’s dedicated resources. This shift will provide 

access to advanced supercomputing facilities, including the MeluXina and LUMI 

supercomputers. Leveraging these powerful systems will not only accelerate the 

experimentation process but also enhance the capability to handle more complex and 

computation-intensive algorithms. 

The use of supercomputers like MeluXina and LUMI in the AI/HPDA part of the 

HiDALGO2 project is essential for several reasons. These high-performance 

computing environments offer vastly greater processing power and memory, which are 

crucial for training more sophisticated models and handling larger datasets effectively. 

Supercomputers facilitate significantly faster data processing speeds, enabling real-

time analytics and the ability to conduct a higher volume of experiments concurrently. 

This capacity is particularly vital as the project advances to tackle more intricate 

challenges that demand extensive computational resources and more advanced AI 

and HPDA applications. Thus, the integration of supercomputing resources is not just 

an upgrade; it is a critical component in scaling the project’s ambitions and achieving 

breakthroughs in complex data-driven problems. 
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6 Conclusions 

During the initial phase of the HiDALGO2 project, the development team dedicated 

considerable efforts to accurately define various problems and pinpoint the challenges 

that needed to be addressed from an AI/High-Performance Data Analytics (HPDA) 

perspective. They specifically focused on identifying where and how AI/HPDA could 

support the pilot workflows most effectively. We additionally tried to document the 

requirements for the various use cases and determine the tools and frameworks upon 

which our implementations will depend, so that they are added to the available 

HiDALGO2 services. In terms of data handling, the primary emphasis was on analysing 

the key aspects of each dataset. The aim was to thoroughly explore these datasets in 

order to align them effectively with the established methodologies. 

Several experiments were conducted, particularly with the UNISTRA and MTG pilots, 

which provided valuable insights into both the problems at hand and the associated 

data. Regarding UNISTRA, the initial experimental results offer several key insights 

into the efficacy of using graph neural networks (GNNs) for transductive link prediction 

tasks, particularly in networks of affected buildings. The findings suggest that building 

location is a significantly informative feature and that utilising undirected graphs tends 

to enhance performance. Interestingly, even though cases with thresholded results 

showed lower Area Under the Curve (AUC), the predicted affected buildings exhibited 

a stronger correlation with their proximity, pointing towards the effectiveness of the 

approach. The study also highlights the advantages of analysing graphs through 

GNNs, notably in generating node embeddings during training to improve link 

predictions. Additionally, the process of comparing graph embeddings is becoming 

increasingly relevant for developing explainability techniques in AI. These techniques 

are vital in an era where AI models often lack transparency. The current research and 

methodologies could thus pave the way for improving the explainability of AI 

applications in the predictive modelling of building networks. In the context of HPDA, 

our focus has been to identify classes of buildings or building faces depending on their 

exposure to sunlight. Our initial attempts failed to yield the expected results. However, 

they have helped us determine that a more detailed data set (i.e., including more 

features) is needed for this kind of analysis. 

For the MTG pilot, the analysis of handcrafted shape descriptors in forest fire 

simulations revealed that each fire exhibits a unique trajectory, which is useful for 

tracking fire evolution but challenging for finding comparable simulations. Principal 

Component Analysis (PCA) was used to reduce the complexity of the fire data, which 

showed strong correlations among features and highlighted a distinct cluster 

corresponding to the initial stages of the fires. This insight underscores the potential 

and limitations of using such descriptors. The next steps include adopting trainable 

similarity measures to dynamically prioritise relevant features, integrating computer 

vision techniques to capture additional visual fire characteristics, and incorporating 
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terrain data to enhance predictive accuracy. These advancements aim to refine the AI 

model for more precise and informative fire simulation comparisons, thereby improving 

fire management and prevention strategies. 
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Annexes 

 

UB Simulation Output Data Description 

The UB application produces, assuming that the simulation is named “strasbourg_M0” 

and is done using 24 partitions, a folder with the following structure. 

• /gis/  
• strasbourg_M0.json  
• strasbourg_M0_lod0.msh  
• strasbourg_M0_lod1.msh  
• /partitioning/  

• building_ids_partitioning.json  
• building_ids.h5  
• mesh.lod0.np24.h5  
• mesh.lod1.np24.h5    
• mesh.lod0.np24.json   
• mesh.lod1.np24.json 

• /instance/np24/ 
• building_metadata.h5  
• /outputs/ 
• /lod0/exports/ 
• /lod1/exports/ 

• /simulators/ 
• setup.json 

 
Each folder and file are described in detail below.  
 

/gis/strasbourg_M0.json: The file contains the geometric information associated with 

the simulated set of buildings. It is stored in GeoJSON [35] format using MultiPolygon 

geometries. This information is requested from OpenStreetMap2 [42]. The produced 

file schema is defined as follows.  

 
{ 
 “building”: (array) [ 
 { 
 “height” : (float) Height of the building, from the ground to the top of the roof 
 “min_height” : (float) Elevation of the bottom part of the building relative to the 
     ground.  
 “id” : (int) OpenStreetMaps identifier of the building 
 “type” (str) : Type of building (e.g. “apartments”, “hospital”, “university”, …) 
 “bounding_box”:(Geometry object) Coordinates of the building’s bounding box 
 “outline” : (Geometry object) Coordinates of the building’s footprint. 
 “parts” : (array) [ 
 { 

 

2   https://wiki.openstreetmap.org/ 

https://wiki.openstreetmap.org/
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  “geometry” (Geometry object) Footprint of the building part, 
  “height” : (float) Height relative to the ground of the building part. 
  “minHeight”: (float) Elevation of the bottom of the building part from the 
      ground. 
  “id”: (int) OpenStreetMaps identifier of the building part 
 }] 
 }, 
{...} 
], 
“referenceCoordinates”: (array(2)) [ (float) latitude, (float) longitude ] 
} 

 
The Geometry Object is described below: 
“geometry” : {  
 “coordinates” : (MultiPolygon) Coordinates in Geographic Coordinate System  
     (degrees) 
 “coordinates_projection”: (MultiPolygon) Projected cartesian coordinates using Mercator 

projection (meters)  
 “type” : (str) Type of the geometry ( in most cases “MultiPolygon” )  
} 

 

/gis/strasbourg_M0_lod0.msh,  /gis/strasbourg_M0_lod1.msh: These two files 

contain the meshes for the LOD-0 and LOD-1 geometries in the Gmsh MSH format 

[34]. The mesh vertices X and Y coordinates are projected as in the GIS file. To obtain 

the coordinates in degrees, one must use the referenceCoordinates element of the 

object contained in strasbourg_M0.json.  

 

/gis/partitioning/building_ids_partitioning.json: Describes how the building's 

output computation is partitioned.  

 

/gis/partitioning/building_ids.h5: Contains one HDF5 [43] dataset named 

“building_metadata”. The dataset consists of an ordered list of the building’s 

OpenStreetMap identifiers. The order of the list is used to access the model outputs in 

/instance/outputs/.  

 

/gis/partitioning/mesh.lod0.np24.h5, /gis/partitioning/mesh.lod1.np24.h5:  Both 
of these files contain the following datasets.  

• “elements”: connectivity of the elements 

• “elements_ghosts”: ghosts cells 

• “marked_subentities”: entities associated with markers 

• “point_coords”: point coordinates of the vertices of the elements 

• “point_ids”: identifier of the points 

• “stats”: some statistics of the partitioned mesh 

 

/gis/partitioning/mesh.lod0.np24.json, /gis/partitioning/mesh.lod1.np24.json: 
The JSON file contains various metadata about the partitioned mesh among which the 
location of the hdf5 file. 
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/instance/np24/building_metadata.h5: The building_metadata.h5 file contains a 

single dataset named “building_metadata”, which has a list of length 3*N, with N being 

the number of buildings. Each Nth value corresponds to the building’s ID, and the value 

that follows each ID (Nth+1) corresponds to the model used. In this case, it signifies the 

number of storeys of the building, where 0 means that the building has one storey. 

Each Nth+2 value of the dataset indicates where to find the corresponding outputs on 

the any /building_*.h5 files.  In order to find the number of outputs for each building, 

the model associated with the building should be explored in the /setup.json file. 

 

/instance/np24/outputs/: The folder contains as many files as timesteps of the 

simulation. Each file is named as building_t.h5, where t is the simulation step index 

and starts at 0. The files are in HDF5 format.  

 

/instance/np24/outputs/building_t.h5: A timestep file contains the integrity of the 

output associated with a given timestamp, for all buildings. In order to identify the 

building and quantity to which a given value corresponds, one must look through the 

/instance/np24/building_metadata.h5 file and the setup.json file to find the building ID 

and output quantity name, respectively.   

 

/instance/np24/lod0/exports/, /instance/np24/lod1/exports/: Both of these folders 

contain time series data useful for visualisation using ParaView. The data is in EnSight 

Case Gold format [33], and carries the following information: 

• Meshing of the city 
• Process identifiers (PID) for which buildings are associated with 
• Solar shading coefficients associated with each mesh vertex 
• Exterior temperature of the buildings surfaces 
• Interior temperature of each building storey 
• Ambient temperature 

 

/simulators/: The /simulators/ folder holds the .fmu files of the models used in the 

simulation, as well as their descriptions in JSON format.  

 

/setup.json: This file contains a JSON object with the models used in the simulation. 

Currently, there is one model per number of storeys of a building, with a maximum of 

ten. This means that the first element of the building_models array represents a one-

storey building, and the 9th building represents a ten-storey building. The output 

element of each model holds a reference to a calculated quantity.  
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WF Simulation Output Data Description 

Study Area and Initial Data 

The selected study area for these initial exercises is a 3x3 km² zone in a district of the 

municipality of Barcelona. It corresponds to the urbanisations of Rectoret, Les Planes, 

Mas Guimbau, and Can Sauró, which are classified as Wildland-Urban Interface (WUI) 

areas due to their pattern of buildings and vegetation mix. This area has been chosen 

because sufficient information is available regarding initial data, fire statistics, 

population, and firefighting and civil protection resources. The boundaries of the study 

area are (ETRS89 UTM31N): 

 

West 423030   South 4585060 

East 426030   North 4588060 

  

The input data for the simulations has been obtained from various sources, primarily 

from the Cartographic and Geologic Institute of Catalonia (ICGC) in its most recent 

versions. The information layers used are: 

  

• Digital Terrain Model: Extracted from a LiDAR point cloud with a 2m resolution. 

Slope and orientation at each point have been calculated from this layer, with 

the same resolution. 

• Fuel Models: These are idealisations of vegetation structures based on the 

widely used Anderson-BEHAVE catalogue worldwide. These models refer to 

surface vegetation, and the characterisation of tree canopy with other 

parameters is necessary. Since crown fires have not been simulated in this 

exercise, these parameters are not included.  

 

 

 

Wind 

According to the area's statistics, the most frequent and adverse winds for wildfires are 

those with a South and West component (SE, S, SW, and W). However, it has been 

preferred to perform an ensemble of simulations considering the entire compass rose, 

i.e., all 8 possible directions (N, NE, E, SE, S, SW, W, and NW) every 45º. The criterion 

for the description of wind direction angle is as follows: the angle of the wind vector 

with the north, in a clockwise direction (geographical criterion). The three wind speeds 

are 5, 10, and 20 km/h at 10m above the surface. 
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Wind Sheltering Factor (WSF) has been applied to reduce the wind at mid-flame, with 
some modifications to the original tables (BEHAVE), which better reflect the reality of 
the local vegetation effect, namely: 

  

Wind Sheltering Factors 

M01 M02 M03 M04 M05 M06 M07 M08 M09 M10 M11 M12 M13 

As proposed in BEHAVE: 

0.36 0.36 0.44 0.55 0.42 0.44 0.44 0.28 0.28 0.36 0.36 0.34 1.00 

As used in the simulations: 

0.69 0.75 0.44 0.55 0.42 0.44 0.44 0.28 0.28 0.36 0.36 0.34 1.00 

 

Fuel Moisture 

The initial moisture values of each component of the forest fuel have been considered 
the same for all simulations, namely: 

 

1HR = 4  1-hour dead fine fuel moisture, in % 

10HR = 5  10-hour dead medium fuel moisture, in % 

100HR = 6  100-hour dead large fuel moisture, in % 

LH = 100  Live herbaceous fuel moisture, in % 

LW = 110 Live woody fuel moisture, in % 

  

These values have been obtained from statistics of average adverse meteorological 
conditions corresponding to the summer months and for the vegetation in the area. 

 

Initial Ignition Points 

Fire Ignition points have been systematically placed in a grid with 100m spacing in both 
the X and Y axes along the simulation area. However, a buffer zone of 500 m has been 
created to mitigate edge effects. Therefore, the number of initial ignition points 𝐼 to be 
considered in the simulation ensemble is: 

 

𝐼 = (1 +
(426030 − 500) − (423030 + 500)

100
)

∙ (1 +
(4588060 − 500) − (4585060 + 500)

100
) = 441 
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Therefore, the obtained number of simulations 𝑁𝑆 are: 

 

𝑁𝑆 = 441 ∙ 3 ∙ 8 = 10584 

 

Simulations Ensemble Results 

The simulations ensemble has been conducted for the mentioned Rectoret area, 
considering that some of the initial ignition points have fallen on non-combustible points 
and, therefore, have not undergone simulation. This aspect can be corrected in future 
exercises by randomly generating positions for the initial ignition points or as proposed 
in other studies, linking the origins of fires to infrastructure such as buildings, 
installations, or the road network.  

  

It can be observed that the roads and streets themselves can act as barriers to the 
spread of fire when they have sufficient width. It is also necessary to emphasise that 
the generation and transport of embers (firebrands) and the creation of secondary 
ignition points (spot fires) have not been taken into account, which would result in a 
very different simulation. These are aspects that will be improved in future work. 

 

 


