

D3.1 Scalability, Optimization and Co-Design Activities
(M12)

Date: January 18, 2024

Disclaimer for Deliverables with dissemination level PUBLIC
This document is issued within the frame and for the purpose of the HiDALGO2 project. Funded by the European Union. This work has received funding from
the European High Performance Computing Joint Undertaking (JU) and Poland, Germany, Spain, Hungary, France, Greece under grant agreement number:
101093457. This publication expresses the opinions of the authors and not necessarily those of the EuroHPC JU and Associated Countries which are not
responsible for any use of the information contained in this publication. This deliverable is subject to final acceptance by the European Commission.
This document and its content are the property of the HiDALGO2 Consortium. The content of all or parts of this document can be used and distributed
provided that the HiDALGO2 project and the document are properly referenced.
Each HiDALGO2 Partner may use this document in conformity with the HiDALGO2 Consortium Grant Agreement provisions.
(*) Dissemination level: PU: Public, fully open, e.g. web; CO: Confidential, restricted under conditions set out in Model Grant Agreement; CI: Classified, Int =
Internal Working Document, information as referred to in Commission Decision 2001/844/EC.

Keywords:

High-Performance Computing (HPC), Benchmarking, Scalability

Document Identification

Status Final Due Date 31/12/2023

Version 1.1 Submission Date 18/01/2024

Related WP WP3 Document Reference D3.1

Related
Deliverable(s)

D2.4, D5.3 Dissemination Level (*) PU

Lead Participant ICCS Lead Author Konstantinos Nikas, Petros
Anastasiadis (ICCS)

Contributors MTG, PSNC, SZE,
UNISTRA

Reviewers Davide Padeletti (USTUTT)

Bartosz Bosak (PSNC)

Document name: D3.1 Scalability, Optimization and Co-Design Activities Page: 3 of 56

Reference: D3.1 Dissemination: PU Version: 1.1 Status: Final

 D3.1 Scalability, Optimization and Co-Design Activities

Document Information

List of Contributors

Name Partner

Angela Rivera MTG

Christophe Prud’homme UNISTRA

József Bakosi SZE

Konstantinos Nikas ICCS

László Környei SZE

Leydi Laura Salazar MTG

Lukasz Szustak PSNC

Mátyás Constans SZE

Michał Kulczewski PSNC

Petros Anastasiadis ICCS

Sabela Sanfiz MTG

Vincent Chabannes UNISTRA

Wojciech Szeliga PSNC

Document History

Version Date Change editors Changes

0.1 23/11/2023 ICCS Initial version of the document - ToC

0.2 18/12/2023 PSNC, ICCS Integrated RES input

0.3 19/12/2023 MTG, ICCS Integrated WildFires input

0.4 20/12/2023 UNISTRA, ICCS Integrated UB input

0.5 22/12/2023 SZE, ICCS Integrated UAP input

0.6 28/12/2023 ICCS Draft for internal review

0.7 28/12/2023 ICCS Minor fixes of broken references

0.8 01/01/2024 ICCS Addressed comments from USTUTT & PSNC

0.9 08/01/2024 ICCS Revised draft sent for internal review

1.0 15/01/2024 ICCS Final draft sent for review by the QM

1.1 17/01/2024 ICCS Final version

Quality Control

Role Who (Partner short name) Approval Date

Deliverable leader Konstantinos Nikas (ICCS) 15/01/2024

Quality manager (deputy) Dennis Hoppe (USTUTT) 16/01/2024

Project Coordinator Marcin Lawenda (PSNC) 18/01/2024

Document name: D3.1 Scalability, Optimization and Co-Design Activities Page: 4 of 56

Reference: D3.1 Dissemination: PU Version: 1.1 Status: Final

 D3.1 Scalability, Optimization and Co-Design Activities

Table of Contents

Document Information ... 3

Table of Contents .. 4

List of Tables ... 5

List of Figures .. 5

List of Acronyms .. 6

Executive Summary ... 7

1. Introduction ... 8

1.1 Purpose of the document ... 8

1.2 Relation to other project work .. 8

1.3 Structure of the document .. 8

2. HiDALGO2 Benchmarking Methodology.. 9

2.1 Benchmarking challenges .. 9

2.2 ReFrame .. 9

2.3 Using ReFrame in HiDALGO2 ... 10

2.3.1 Script parameterisation and execution .. 11

2.3.2 Post-processing and storage of benchmarking results .. 12

3. Access to EuroHPC JU supercomputers ... 14

3.1 Getting access to EuroHPC JU systems ... 14

3.2 Awarded EuroHPC JU resources (M1-M12) .. 15

4. HiDALGO2 pilots’ benchmarking ... 17

4.1 Renewable Energy Sources (RES) .. 17

4.1.1 Pilot description .. 17

4.1.2 Benchmarking .. 18

4.2 Urban Air Project (UAP) ... 22

4.2.1 Pilot description .. 22

4.2.2 Benchmarking .. 22

4.3 Urban Building (UB) ... 31

4.3.1 Pilot description .. 31

4.3.2 Benchmarking .. 32

4.4 Wildfires (WF) .. 35

4.4.1 Pilot description .. 35

4.4.2 Benchmarking .. 36

4.5 Summary & next steps ... 40

5. HiDALGO2 Co-Design Activities .. 43

Document name: D3.1 Scalability, Optimization and Co-Design Activities Page: 5 of 56

Reference: D3.1 Dissemination: PU Version: 1.1 Status: Final

 D3.1 Scalability, Optimization and Co-Design Activities

5.1 HiDALGO2 strategy ... 43

6. Conclusions .. 44

7. References ... 45

Annexes – HiDALGO2 ReFrame scripts examples .. 47

Annex I ... 47

Annex II .. 50

Annex III ... 51

List of Tables

Table 1 Current EuroHPC JU systems coverage matrix. A green cell indicates that access has been

awarded; a yellow cell indicates that a partner is waiting for or intends to request access to a system,

and a red cell denotes a system that a partner is not planning to request access to, as it is either

similar to another system/partition or not suitable for the execution of a pilot. __________________ 16
Table 2 Hardware configuration of CPU partitions used during the project’s first year____________ 17
Table 3 Hardware configuration of GPU partitions during the project’s first year ________________ 17
Table 4 Programming & runtime environment for RES benchmarks _________________________ 18
Table 5 Details of RES-EULAG benchmarking scenarios _________________________________ 19
Table 6 Programming & runtime environment for UAP-OpenFOAM benchmarks _______________ 23
Table 7 Programming & runtime environment for UAP-RedSim benchmarks __________________ 23
Table 8 Programming & runtime environment for UAP-Xyst benchmarks _____________________ 23
Table 9 Details of UAP-OpenFOAM benchmarking scenarios ______________________________ 24
Table 10 Details of UAP-RedSIM benchmarking scenarios ________________________________ 24
Table 11 Details of UAP-Xyst benchmarking scenarios ___________________________________ 24
Table 12 Benchmarking scenarios for the different implementations of UAP’s CFD module _______ 25
Table 13 Programming & runtime environment for UB benchmarks__________________________ 32
Table 14 Details of Ktirio-UB benchmarking scenarios ____________________________________ 33
Table 15 Programming & runtime environment for WF benchmarks _________________________ 37
Table 16 Details of WF benchmarking scenarios __ 38
Table 17 Status of benchmarking and optimisation related KPIs in M12 ______________________ 41

List of Figures

Figure 1 RES-EULAG per node speedup for the 1h_r10 scenario ___________________________ 20
Figure 2 RES-EULAG per node speedup for the 1h_r5 scenario ____________________________ 20
Figure 3 RES-EULAG execution breakdown for the 1h_r10 scenario ________________________ 21
Figure 4 RES-EULAG execution breakdown for the 1h_r5 scenario _________________________ 21
Figure 5 UAP-OpenFOAM per node speedup for the Győr-728k scenario ____________________ 25
Figure 6 UAP-OpenFOAM per node speedup for the Győr-3.4M scenario ____________________ 26
Figure 7 UAP-OpenFOAM per node speedup for the Győr-14M scenario _____________________ 26
Figure 8 UAP-OpenFOAM execution breakdown for the Győr-728k scenario __________________ 27
Figure 9 UAP-OpenFOAM execution breakdown for the Győr-3.4M scenario __________________ 27
Figure 10 UAP-OpenFOAM execution breakdown for the Győr-14M scenario _________________ 28

Document name: D3.1 Scalability, Optimization and Co-Design Activities Page: 6 of 56

Reference: D3.1 Dissemination: PU Version: 1.1 Status: Final

 D3.1 Scalability, Optimization and Co-Design Activities

Figure 11 Speedup of multi-GPU implementation of UAP-RedSIM __________________________ 29
Figure 12 Speedup of multi-CPU implementation of UAP-RedSIM __________________________ 29
Figure 13 UAP-Xyst per node speedup for the Taylor-Green-794M scenario __________________ 30
Figure 14 UAP-Xyst per node speedup for the Taylor-Green-144M scenario __________________ 31
Figure 15 Ktirio-UB per node speedup for the 0-M1 scenario _______________________________ 33
Figure 16 Ktirio-UB per node speedup for the 0-M2 scenario _______________________________ 34
Figure 17 Ktirio-UB execution breakdown for the 0-M1 scenario ____________________________ 35
Figure 18 Ktirio-UB execution breakdown for the 0-M2 scenario ____________________________ 35
Figure 19 WF per node speedup for the small scenario ___________________________________ 38
Figure 20 WF per node speedup for the 2k_test using ndown for dynamic downscaling __________ 39
Figure 21 WF execution breakdown for the small scenario ________________________________ 40
Figure 22 WF execution breakdown for the 2k_test scenario _______________________________ 40

List of Acronyms

Abbreviation /
acronym

Description

CFD Computational Fluid Dynamics

CoE Centre of Excellence

CPU Central Processing Unit

EESSI European Environment for Scientific Software Installations

EULAG Eulerian/semi-Lagrangian fluid solver

GFS Global Forecasting System

GIS Geographic Information System

GPU Graphics Processing Unit

GRIB GRIdded Binary or General Regularly-distributed Information in Binary form

HPC High Performance Computing

I/O Input/Output

KPI Key Performance Indicator

LOD Level of Detail

MPI Message Passing Interface

RES Renewable Energy Sources

SIF Singularity Image Format

UAP Urban Air Project

UB Urban Building

WF Wildfires

WRF Weather Research and Forecasting Model

Document name: D3.1 Scalability, Optimization and Co-Design Activities Page: 7 of 56

Reference: D3.1 Dissemination: PU Version: 1.1 Status: Final

 D3.1 Scalability, Optimization and Co-Design Activities

Executive Summary

HiDALGO2 aims to follow a systematic and reproducible methodology for collecting

and storing benchmarking results for all the HiDALGO2 pilots to enable their

development and optimisation towards achieving the highest possible performance

when running on the EuroHPC JU supercomputers. For this purpose, Deliverable D3.1

sets the guidelines of the benchmarking methodology that will be followed within the

project.

During the first year of the project, the HiDALGO2 methodology has been applied for

benchmarking the HiDALGO2 pilots on various EuroHPC JU systems and initial

findings are reported in this document. A few bottlenecks have been already identified

and constitute the primary target of the optimisation activities that will start in the

second year of the project.

Finally, this document discusses the challenges faced in the project’s attempts to

acquire resources on the EuroHPC JU systems and outlines the project’s strategy

regarding co-design activities.

Document name: D3.1 Scalability, Optimization and Co-Design Activities Page: 8 of 56

Reference: D3.1 Dissemination: PU Version: 1.1 Status: Final

 D3.1 Scalability, Optimization and Co-Design Activities

1. Introduction

1.1 Purpose of the document

Deliverable D3.1 “Scalability, Optimization and Co-Design Activities (M12)” is prepared

in the context of WP3, which identifies and tackles the issues that are currently holding

HiDALGO2 pilots back from achieving the highest possible performance when running

on the EuroHPC JU supercomputers. This document defines the HiDALGO2

benchmarking methodology that will ensure the reproducibility and validation of the

gathered results and will reliably assess the performance of applications and identify

bottlenecks, providing thus critical input to the optimisation activities.

1.2 Relation to other project work

Deliverable D3.1 summarises initial findings regarding the performance and scalability

of HiDALGO2 pilots, which are described in deliverable D5.3 “Research

Advancements for the Pilots”, on the project’s HPC infrastructure, as defined in

deliverable D2.4 “Infrastructure Provisioning, Workflow Orchestration and Component

Integration”. Deliverable D3.1 drives future activities within WP3 (Exascale Support for

Global Challenges) and WP5 (Tackling Global Challenges). It is the first of a series of

reports focusing on scalability, optimisation and co-design activities (D3.1 in M12, D3.2

in M22, and D3.3 in M47).

1.3 Structure of the document

The document is structured as follows:

 Chapter 2 defines the benchmarking methodology that HiDALGO2 has defined to

ensure the reproducibility and validation of results.

 Chapter 3 highlights the challenges of acquiring resources on EuroHPC JU

systems and presents the current machine coverage.

 Chapter 4 describes the benchmarking configuration used for each HiDALGO2

pilot and presents the initial findings of their benchmarking.

 Chapter 5 discusses the status of HiDALGO2 KPIs related to benchmarking and

optimisation activities.

 Chapter 6 describes the HiDALGO2 strategy regarding co-design activities.

 Chapter 7 concludes the document.

Document name: D3.1 Scalability, Optimization and Co-Design Activities Page: 9 of 56

Reference: D3.1 Dissemination: PU Version: 1.1 Status: Final

 D3.1 Scalability, Optimization and Co-Design Activities

2. HiDALGO2 Benchmarking Methodology

The purpose of benchmarking in HiDALGO2 is to continuously evaluate the efficiency

of the various components of the HiDALGO2 pilots, identify performance bottlenecks

and feed these results to the optimisation activities within the project. Motivated by the

difficulties and pitfalls faced by its predecessor, the HiDALGO Centre of Excellence

(CoE) [1], HiDALGO2 has defined a benchmarking methodology that focuses on the

reproducibility and validation of the collected measurements.

2.1 Benchmarking challenges

Reproducibility is considered as a core requirement for benchmarking activities.

However, the complex nature of HPC deployments makes the execution and repetition

of benchmarks tedious and error-prone. The HiDALGO CoE faced this exact problem;

the diversity of hardware architectures, system and programming environments,

application codes, input datasets and output file formats complicated significantly the

process of managing and deploying executions, and collecting and reporting results.

To mitigate this problem, HiDALGO set up a formal, manual, cumbersome procedure

for tracking, organising and logging executions and their results that, nevertheless,

allowed the emergence of a few reproducibility issues and led to some inconsistencies

in the reporting of the project.

To avoid these problems, the HiDALGO2 consortium has agreed on a uniform

approach to benchmarking for all HiDALGO2 pilots that will ensure the reproducibility

and validation of results. First, we have defined a set of fundamental benchmarking

metrics that will be used across all HiDALGO2 pilots and will establish a common

ground for performance comparisons. Second, we have agreed on employing

ReFrame [2], an easy-to-use, powerful and efficient framework for managing and

deploying the pilots’ runs across all EuroHPC JU systems.

2.2 ReFrame

ReFrame is a framework dedicated to creating system regression tests and

benchmarks, developed and maintained by the Swiss National Supercomputing Centre

(CSCS). It is specifically tailored to HPC systems, offering many capabilities that

significantly enhance testing methodologies and benchmarking pipelines. Besides

CSCS [3], ReFrame is also used for testing the EPCC systems [4] and the Swedish

HPC2N and C3SE clusters [5]. Additionally, it is employed for running the tests that

comprise the European Environment for Scientific Software Installations (EESSI) test

suite [6] and for executing the performance benchmarks and regression tests for the

ExCALIBUR project [7].

Document name: D3.1 Scalability, Optimization and Co-Design Activities Page: 10 of 56

Reference: D3.1 Dissemination: PU Version: 1.1 Status: Final

 D3.1 Scalability, Optimization and Co-Design Activities

ReFrame employs an easy-to-use Python-based design, enabling users to define tests

and benchmarks as functions and implement complex pipelines as simple workflows.

At the same time, ReFrame abstracts away the system interaction details, allowing the

users to focus solely on the logic of their tests and, hence, create portable scripts that

can be deployed on different HPC systems; this is critical for HiDALGO2, as we must

deploy and benchmark all pilots on all EuroHPC JU systems, which differ in supported

libraries, modules, parallel frameworks, etc. Finally, ReFrame facilitates the

establishment of a standard reporting layout and post-processing of log files for all

pilots, making comprehensive reporting feasible.

To employ ReFrame, users need to define two files: the configuration file and the test

file. The former defines the supercomputing systems and their corresponding

environments (compilers, modules, libraries) that will be used for running the tests or

the benchmarks. Thus, deploying the same run on a different HPC system requires

only the creation of a new configuration file (or the extension of an existing

configuration file) with the new system’s details without any modifications to the test

file.

On the other hand, the test file encapsulates a class for testing that serves as a

wrapper for multiple tests and benchmarks and supports the creation of complex

pipelines with multiple stages and intra-stage dependencies. Additionally, users can

define in the test file Python functions employed for pre- and post-processing, result

validation and benchmarking. Consequently, deploying the execution of a new or

modified pipeline on a specific HPC system requires only the creation or modification

of the test file without any modifications to the configuration file.

2.3 Using ReFrame in HiDALGO2

We have developed a ReFrame code template that serves as a common framework

among all HiDALGO2 pilots. Following ReFrame’s modular approach, the test file has

been partitioned into two independent files to separate the definition of the test pipeline

from the definition of the benchmarking parameters. Specifically, the HiDALGO2

ReFrame code template comprises three core files, each assuming a unique role as

follows:

 cluster_config_file.py: This is the ReFrame configuration file and contains the

description of the target HPC system and its partitions, along with access

information for each system. It also defines the environments that will be utilised,

i.e., the set of modules that need to be loaded before the execution starts. An

example configuration file (used by the UB pilot for Altair, Discoverer, Karolina and

MeluXina) is given in Annex I.

 benchmarking.py: This file configures test-specific parameters, such as paths

and input files. Additionally, it contains scheduler-specific variables that are

necessary for launching and managing the execution of individual runs, such as

Document name: D3.1 Scalability, Optimization and Co-Design Activities Page: 11 of 56

Reference: D3.1 Dissemination: PU Version: 1.1 Status: Final

 D3.1 Scalability, Optimization and Co-Design Activities

system partition, and nodes and cores configuration. An example (used for

benchmarking the UB pilot) is given in Annex II.

 main.py: This file contains the definition of the pipeline that will be executed. It

includes sanity functions for validation and functions for results logging that can be

tailored to the specific needs of the different pipelines of each pilot. An example

(used for executing the UB pilot) is given in Annex III.

2.3.1 Script parameterisation and execution

The workflows of the HiDALGO2 pilots differ in terms of length and number of stages.

Therefore, a different ReFrame pipeline has been developed to benchmark each pilot.

Renewable Energy Sources (RES)

RES already employed an in-house, PSNC-developed, Python-based scheduler for

submitting and running the pilot on HPC systems prior to HiDALGO2. Therefore, for

simplicity a ReFrame wrapper has been created around this scheduler. This wrapper

sets all the necessary variables for the runs loading the input files of the simulated

scenarios, while the different stages of the RES workflow are managed by the pre-

existing scheduler.

Urban Air Project (UAP)

As detailed in Section 4.2.1, the UAP pilot employs three different codes for CFD. The

implementation based on OpenFOAM [8] uses a pipeline with three stages, constant

across all scenarios: data import, domain decomposition and simulation. The ReFrame

test file has been adapted to implement this pipeline taking into account that the data

import stage is executed only once for each distinct input, unlike the other two stages,

which are executed multiple times for each input configuration. Further, the created

script ensures that the simulation stage always runs on the nodes defined during the

domain decomposition stage using a number of tasks equal to that of the decomposed

OpenFOAM subdomains.

The integration of ReFrame and the OpenFOAM-based UAP has been a two-step

process. First, it has been successfully completed and used on Altair and LUMI. In

parallel, to speed up the benchmarking process for the purposes of this deliverable,

runs on other EuroHPC JU systems reported in D3.1 have been performed using an

in-house, SZE-developed, bash-based tool that has been used prior to HiDALGO2.

The integration with ReFrame on these systems will be completed and tested in the

second year of the project; similarly for the integration of ReFrame with the other two

implementations of UAP.

Urban Building (UB)

The UB pilot uses Apptainer [9] to containerise its workflow. ReFrame is capable of

launching containerized applications, hence the integration of UB and ReFrame has

Document name: D3.1 Scalability, Optimization and Co-Design Activities Page: 12 of 56

Reference: D3.1 Dissemination: PU Version: 1.1 Status: Final

 D3.1 Scalability, Optimization and Co-Design Activities

been straightforward. A simple ReFrame test script with one stage has been created,

that takes as input a SIF file and an Apptainer command, and launches the run using

MPI on the requested number of nodes.

Wildfires (WF)

The WF pilot has been the most complex to integrate with ReFrame. This is because

their code pipelines vary per simulated scenario, which leads to creating different

ReFrame test files for each scenario. As further detailed in Section 4.4.1, WF consists

of a pre-processing and simulation part. Pre-processing comprises three stages, while

the simulation part consists of a dynamically adjusted number of stages based on the

scale of the simulated problem.

The integration of these pipelines with ReFrame presented several challenges. The

primary hurdle revolved around the configuration of temporary folders for the execution

of each run and managing I/O between the different stages of the pipelines, which is

done via copying or linking several intermediate files and directories.

2.3.2 Post-processing and storage of benchmarking results

The execution of multiple pilots simulating different scenarios and producing output

with different data formats across multiple supercomputing centres complicates results’

processing and storage. To address this issue, we have defined a uniform post-

processing and log storing procedure and implemented it with ReFrame.

First, we have created pilot-specific post-processing functions in the ReFrame test

files, which are executed at the end of each pilot pipeline. These functions parse the

output data logs generated by the pilot and transform them to a csv-like format with a

predefined layout (columns, datatypes, etc.). The data is stored in a file together with

metadata regarding the HPC system including details such as the number of nodes

and cores employed at each pipeline stage. Post-processing through ReFrame

ensures that data regarding multiple executions of the same pilot for a specific

benchmarking scenario using different node configurations will be collated and stored

in a single file using the appropriate format.

The files generated on each HPC centre when benchmarking a pilot for a specific

simulation scenario are stored in a central repository. More specifically, we have

established a central repository for benchmarking (hid-benchmarking) in the

HiDALGO2 Bitbucket server hosted by PSNC. There, we have established individual

repositories for the benchmarking of each pilot and connected them as sub-modules

of hid-benchmarking.

Each pilot repository uses a predefined directory structure to enable the efficient

storing and retrieval of benchmarking data. At the top level, data is grouped by system

and then by run type (i.e., benchmarking, profiling, etc.). At the last level, data is

organised by simulation scenario; each directory is named after the scenario that was

Document name: D3.1 Scalability, Optimization and Co-Design Activities Page: 13 of 56

Reference: D3.1 Dissemination: PU Version: 1.1 Status: Final

 D3.1 Scalability, Optimization and Co-Design Activities

used for benchmarking and contains the log files created by the post-processing

functions explained previously, with the execution date and time embedded in the log

file name.

As uploading these logs to the repository manually is time-consuming and error-prone,

we have implemented a function that is executed at the end of our ReFrame scripts

and extracts the necessary upload information, such as directory path and log name

and initiates their push to the central repository. Hence, when benchmarking is

completed, our ReFrame scripts parse, concatenate and upload the logs to the

appropriate folder of the HiDALGO2 Bitbucket repository.

Document name: D3.1 Scalability, Optimization and Co-Design Activities Page: 14 of 56

Reference: D3.1 Dissemination: PU Version: 1.1 Status: Final

 D3.1 Scalability, Optimization and Co-Design Activities

3. Access to EuroHPC JU supercomputers

HiDALGO2 aspires to deploy, benchmark and optimise the HiDALGO2 pilots on all

EuroHPC JU systems. For this purpose, HiDALGO2 requires simplified access to the

appropriate amount of resources on all EuroHPC JU supercomputers. Unfortunately,

code owners have to apply for limited resources individually, making the entire process

cumbersome. The situation is further complicated by the fact that each Hosting Entity

has its own user management and accounting as well different security processes in

place.

The following subsections detail the procedure followed by the HiDALGO2 partners in

order to acquire resources and outline the current access status to the EuroHPC JU

systems.

3.1 Getting access to EuroHPC JU systems

For the first year of the project, HiDALGO2 partners have acquired access to the

EuroHPC JU systems through the “Benchmark and Development Access Calls”.

According to the calls, these are continuously open with a “maximum time-to-

resources-access of two weeks after the cut-off date”. However, according to our

experience, this is not always the case, as detailed below:

 RES pilot: PSNC applied for access to the CPU partitions of Karolina, LUMI, and

MeluXina on 1st May 2023. While the proposal for LUMI was accepted after around

three weeks, no feedback was provided for the other two systems. Almost two

months after the initial submission, PSNC resubmitted its proposal for acquiring

resources on MeluXina and Karolina and was immediately accepted for the former.

However, for the latter, the PSNC proposal was finally accepted around 7 months

after the original application.

 UAP pilot: SZE applied for access to the CPU partitions of Discoverer, LUMI, and

MeluXina, and the GPU partitions of Karolina and Vega on 1st February 2023. The

proposal for Discoverer, MeluXina and Vega was accepted in the next two weeks.

On the contrary, the proposals for accessing Karolina and LUMI were accepted

around four and six weeks after the original application, respectively.

 WF pilot: MTG applied for access to the CPU partitions of Discoverer, Karolina,

LUMI, MeluXina and Vega on the cut-off on 1st August 2023. The proposal for

Karolina and Vega was accepted in the next two weeks, and for LUMI in around

four weeks. However, as there was yet to be a decision made for Discoverer and

MeluXina, MTG resubmitted its application for both systems on 26th October. While

MeluXina accepted the resubmitted proposal almost immediately, MTG has not

received any feedback regarding Discoverer yet, almost 5 months after the initial

application.

Document name: D3.1 Scalability, Optimization and Co-Design Activities Page: 15 of 56

Reference: D3.1 Dissemination: PU Version: 1.1 Status: Final

 D3.1 Scalability, Optimization and Co-Design Activities

 Benchmarking: ICCS, as the leader of benchmarking activities, applied on the 1st

August cut-off for access to all EuroHPC JU systems available at the time. The

application was accepted for Vega, Karolina and LUMI in around three, five and

six weeks, respectively. As no feedback was provided for the rest of the systems,

ICCS contacted PRACE at the start of October inquiring about the status of the

application. Following this enquiry, the application was accepted for MeluXina and

Leonardo in one and two weeks, respectively, and for Discoverer almost two

months later. Finally, ICCS applied to access the GPU partition of LUMI on the 1st

November cut-off, which was accepted in around three weeks.

In general, the entire process of getting access to the EuroHPC JU systems has not

been straightforward. The “maximum time-to-resources-access of two weeks after the

cut-off date” rule of the Benchmark & Development Access Calls seems to be

essentially void, hindering the timely access of the project to the required resources.

3.2 Awarded EuroHPC JU resources (M1-M12)

Table 1 provides the EuroHPC JU systems coverage at the end of the first year of the

HiDALGO2 project. Access to systems has been requested in such a way that

HiDALGO2 does not focus on a subset of supercomputers and works on as many

systems as possible, taking into account of course the implementations of the pilots.

Specifically:

 No pilot has an FPGA-based implementation.

 RES, UB and WF are currently implemented only for execution on multiple CPUs.

 UAP uses three different codes. Two of those are implemented solely for execution

on multiple CPUs, while the third has also a multi-GPU implementation, targeting

NVIDIA GPUs.

 WF is interested on developing a version that can employ multiple GPUs.

Based on the above, no resources have been requested in the FPGA partition of

MeluXina. Between Vega and MeluXina, where each node in the GPU partition has

four NVIDIA A100 GPUs, SZE opted for VEGA for the deployment of the GPU

implementation of UAP, together with Karolina, where each node has eight NVIDIA

A100 GPUs. Finally, all pilot owners are targeting the pre-exascale machines, i.e. LUMI

and Leonardo.

It should be noted that in order to kick-start the benchmarking activities, UNISTRA, the

owner of the UB pilot, has been accessing EuroHPC systems through the ICCS grants.

UNISTRA will apply for its own resources in the next cut-off date of the Benchmark and

Development Access Call.

Document name: D3.1 Scalability, Optimization and Co-Design Activities Page: 16 of 56

Reference: D3.1 Dissemination: PU Version: 1.1 Status: Final

 D3.1 Scalability, Optimization and Co-Design Activities

Table 1 Current EuroHPC JU systems coverage matrix. A green cell indicates that access has
been awarded; a yellow cell indicates that a partner is waiting for or intends to request access
to a system, and a red cell denotes a system that a partner is not planning to request access

to, as it is either similar to another system/partition or not suitable for the execution of a pilot.

System Partition RES UAP UB WF Benchmarking

Discoverer CPU

Karolina
CPU

GPU

LUMI
CPU

GPU

Meluxina

CPU

GPU

FPGA

Vega
CPU

GPU

Leonardo
CPU

GPU

MareNostrum5 System not yet available

Deucalion System not yet fully accessible

Document name: D3.1 Scalability, Optimization and Co-Design Activities Page: 17 of 56

Reference: D3.1 Dissemination: PU Version: 1.1 Status: Final

 D3.1 Scalability, Optimization and Co-Design Activities

4. HiDALGO2 pilots’ benchmarking

This section reports the benchmarking activities that took place during the first year of

the HiDALGO2 project. As the pilots have been executed on various systems, Table 2

and Table 3 provide details regarding the hardware platforms of the CPU and GPU

partitions of the used supercomputing centres, respectively.

Table 2 Hardware configuration of CPU partitions used during the project’s first year

 CPU/node
Cores/
node

Memory Interconnect

Altair 2x INTEL Xeon 8268 48 192GB InfiniBand @ 200 Gb/s

Discoverer 2x AMD EPYC 7H12 128 256GB InfiniBand @ 200 Gb/s

Karolina 2x AMD EPYC 7H12 128 256GB InfiniBand @ 200 Gb/s

LUMI 2x AMD EPYC 7763 128 256GB Slingshot-11 @ 200 Gb/s

MeluXina 2x AMD EPYC 7H12 128 512GB InfiniBand @ 200 Gb/s

Vega 2x AMD EPYC 7H12 128 256GB InfiniBand @ 200 Gb/s

Table 3 Hardware configuration of GPU partitions during the project’s first year

 CPU Memory GPU GPU Memory

Karolina 2x AMD EPYC 7763 1 TB 8x NVIDIA A100 40 GB HBM2

Vega 2x AMD EPYC 7H12 512 GB 4x NVIDIA A100 40 GB HBM2

4.1 Renewable Energy Sources (RES)

4.1.1 Pilot description

A detailed presentation of the Renewable Energy Sources (RES) can be found in

Deliverable D5.3 “Research Advancements for Pilots”. In short, this pilot deals with

different scenarios: i) prediction of energy produced by wind farms, ii) prediction of

energy produced by photovoltaic systems, and iii) prediction of the damages to the

overhead electrical network.

All these use cases use multiscale weather prediction models, namely WRF [10] and

EULAG [11][12], which are coupled to each other. As WRF is the primary focus of

another HiDALGO2 pilot (Wildfires), the benchmarking and optimisation activities of

the RES pilot focus mainly on EULAG, an all-scale geophysical flow solver, written in

Fortran and parallelised using message passing. The pilot is built in a modular way,

such that every component can be executed and, hence, benchmarked independently:

pre-processing for obtaining initial boundary conditions; pre-processing for mesoscale

Document name: D3.1 Scalability, Optimization and Co-Design Activities Page: 18 of 56

Reference: D3.1 Dissemination: PU Version: 1.1 Status: Final

 D3.1 Scalability, Optimization and Co-Design Activities

weather prediction and actual run; coupling between the models; pre-processing for

EULAG model and actual run, and post-processing of simulation results including

visualisation. The execution of each module in an HPC environment is orchestrated by

a framework written in Python.

4.1.2 Benchmarking

Systems & Environment

RES has been benchmarked on two supercomputers, the EuroHPC JU LUMI system

and PSNC’s Altair. The programming and runtime environments used in each system

are given in Table 4.

Table 4 Programming & runtime environment for RES benchmarks

 Altair LUMI

Compiler GNU Fortran v.6.2.0 GNU Fortran v.10.3.0

Parallel framework Open MPI v.4.1.0 Cray MPICH v.8.1.27

Libraries

NetCDF-C 4.8.1 4.9.2

NetCDF-Fortran 4.5.3 4.6.1

HDF5-C 1.12.1 1.14.1

HDF5-Fortran 1.12.1 1.14.1

Python 3.10.11 3.9.17

Python modules

cartopy 0.21.1 0.21.1

imageio 2.31.1 2.31.5

matplotlib 3.7.1 3.7.1

netcdf4 1.6.0 1.6.0

numpy 1.22.3 1.22.3

pandas 1.5.3 2.0.3

pyproj 3.4.1 3.4.1

pytest 7.4.0 7.4.3

retry 0.9.2 0.9.2

scipy 1.8.1 1.8.1

setuptools 68.0.0 68.2.2

wrf-python 1.3.4.1 1.3.4.1

xarray 2023.6.0 2023.11.0

Benchmarking configuration

The benchmarks presented in this deliverable are based on the third scenario

described in Section 4.1.1, i.e., the prediction of damages. The analysis is conducted

for the electrical overhead network over a 3.03km x 2.39km area; however, as this

scenario is based on sensitive data provided by a Polish Distribution System Operator,

more details regarding the simulated area cannot be disclosed. Initial conditions are

Document name: D3.1 Scalability, Optimization and Co-Design Activities Page: 19 of 56

Reference: D3.1 Dissemination: PU Version: 1.1 Status: Final

 D3.1 Scalability, Optimization and Co-Design Activities

taken from the Global Forecasting System (GFS) [13] and are further elaborated by

WRF executions on nested domains of 3,600m, 600m and 100m horizontal resolution.

In order to get an insight into how the number of grid points per core affects the

performance of RES-EULAG while increasing the accuracy of the results, the domain

used by the EULAG model covers the 3.03km x 2.39km area with two variants of

horizontal resolution used for benchmarking purposes: 10m and 5m. The vertical

resolution of 230m domain height is kept at the level of 5m and the simulated time is

equal to one hour. The details of the two simulation scenarios are given in Table 5.

Table 5 Details of RES-EULAG benchmarking scenarios

Scenario
Horizonal mesh

resolution
Grid resolution Timestep Simulated time

1h_r10 10m 320 x 252 x 46 0.05 s 1 hour

1h_r5 5m 608 x 472 x 46 0.02 s 1 hour

As the grid is divided between MPI tasks, each task of the 1h_r5 scenario receives

3.5x more data to be computed within a single timestep compared to the 1h_r10

scenario. As the horizontal grid gets denser, there is a need to decrease the timestep

in order to preserve the numerical stability of the solver. Therefore, 1h_r5 requires 2.5x

more timesteps to be computed.

Results & Analysis

Figure 1 and Figure 2 depict the speedup achieved on LUMI and Altair for the 1h_r10

and 1h_r5 scenarios, respectively. On Altair the pilot was executed with up to 85 nodes,

i.e, 4080 cores; on LUMI it was executed with up to 10 nodes, i.e., 1,280 cores.

Obtaining results for more than 10 nodes in LUMI for this deliverable was not possible

due to the many of jobs waiting in the system’s queue; we will include them in the

forthcoming relevant deliverables (e.g. D3.2 in M22). In both figures, we present results

for the total execution (end-to-end) of the pilot as well as the iterative RES-EULAG

computational part (simulation).

For both systems and scenarios the code scales linearly or better up to 10 nodes. For

the 1h_r10 scenario, RES-EULAG scales better than linear for 2-6 nodes because of

the best fit of data size to be computed within a single CPU. Adding more nodes affects

the speedup, but it still remains close to linear up to 10 nodes; running on more than

10 nodes, allows to obtain results in less amount of time, however the speedup tends

to flatten.

As explained before, for the 1h_r5 scenario, each task receives a 3.5x larger

subdomain to be computed compared to the 1h_r10 scenario, i.e., 1h_r5 is more

compute-intensive than 1h_r10; hence, the speedup is expected to be better. Indeed,

Document name: D3.1 Scalability, Optimization and Co-Design Activities Page: 20 of 56

Reference: D3.1 Dissemination: PU Version: 1.1 Status: Final

 D3.1 Scalability, Optimization and Co-Design Activities

as shown in Figure 2, the speedup achieved for 1h_r5 drops slower compared to

1h_r10. It is estimated that linear speedup could be achieved for 32 nodes on LUMI.

Figure 1 RES-EULAG per node speedup for the 1h_r10 scenario

Figure 2 RES-EULAG per node speedup for the 1h_r5 scenario

Figure 3 and Figure 4 show how the execution is split between the computational part

and the pre- and post-processing stages. Pre-processing is mainly focused on reading

initial simulation conditions from files and distributing them among processes, while

post-processing on processing output data and generating images.

In both scenarios, post-processing becomes more significant as the number of nodes

is increased. This is due to the computational time decreasing while processing output

Document name: D3.1 Scalability, Optimization and Co-Design Activities Page: 21 of 56

Reference: D3.1 Dissemination: PU Version: 1.1 Status: Final

 D3.1 Scalability, Optimization and Co-Design Activities

data is fairly constant and independent of the number of nodes used. It is evident that

it will be beneficial to parallelise the I/O, in particular for longer production runs.

On the other hand, pre-processing stage is short and almost negligible for up to 10

nodes. However, some unexpected long runtimes were observed on Altair when

executing the 1h_r10 scenario with 32 and 64 nodes. We believe that these are due to

some temporary issues with the storage of the system, as we did not observe

something similar when executing the 1h_r5 scenario. Nevertheless, these runs need

to be re-executed to confirm that this is indeed the case.

Figure 3 RES-EULAG execution breakdown for the 1h_r10 scenario

Figure 4 RES-EULAG execution breakdown for the 1h_r5 scenario

Document name: D3.1 Scalability, Optimization and Co-Design Activities Page: 22 of 56

Reference: D3.1 Dissemination: PU Version: 1.1 Status: Final

 D3.1 Scalability, Optimization and Co-Design Activities

4.2 Urban Air Project (UAP)

4.2.1 Pilot description

The CFD module of the Urban Air Project (UAP) workflow calculates airflow within a

city. It is the most computationally demanding module of the workflow and will be the

focus of the benchmarking activities reported in this deliverable.

UAP uses three different codes for CFD: OpenFOAM, RedSIM, and Xyst.

The first implementation is based on OpenFOAM [14], with custom modules developed

by SZE for imposing external, time-dependent atmospheric boundary conditions and

time-dependent pollution sources. It uses MPI for inter-process communication and its

pipeline consists of four stages:

1. First, external data, including an unstructured mesh, boundary condition tables

and source term tables, all provided by the UAP pipeline, are converted to

OpenFOAM format.

2. Next, the calculation domain is decomposed into several subdomains that

correspond to the number of processes that will be executed.

3. Then, a parallel section follows, where a steady state of the incompressible

Navier-Stokes equations is calculated using simpleFoam [15] with the initial set

of constant parameters and conditions.

4. Finally, the produced result serves as an initial condition for the unsteady part

solving the unsteady incompressible Navier-Stokes equations with time varying

boundary conditions with pimpleFoam [16].

The second code is RedSIM, an in-house code developed by SZE that solves the

compressible Navier-Stokes equations on unstructured grids with boundary conditions

provided by the UAP pipeline. SZE has implemented a multi-CPU and a multi-GPU

version of RedSIM. The former leverages OpenMP and MPI and works in a master-

slave configuration, with one node handling administrative tasks and I/O, while the

latter relies on CUDA targeting primarily NVIDIA GPUs.

Finally, the third code is Xyst [17], another in-house code developed by SZE that is

open source and contains multiple finite element solvers using unstructured

tetrahedron grids. Instead of MPI, Xyst relies on the Charm++ runtime system [18].

Charm++'s execution model is asynchronous by default and enables automatic

redistribution of computational load based on real-time CPU measurements.

4.2.2 Benchmarking

Systems & Environment

UAP has been benchmarked on five EuroHPC JU systems. Each system’s

programming and runtime environments used in each system are detailed in Table 6

for UAP-OpenFOAM, Table 7 for UAP-RedSim and Table 8 for UAP-Xyst, respectively.

Document name: D3.1 Scalability, Optimization and Co-Design Activities Page: 23 of 56

Reference: D3.1 Dissemination: PU Version: 1.1 Status: Final

 D3.1 Scalability, Optimization and Co-Design Activities

Table 6 Programming & runtime environment for UAP-OpenFOAM benchmarks

 Discoverer LUMI-CPU Meluxina-CPU

Compiler GNU GCC 11.3.0 Cray clang 14.0.2 GNU GCC 11.3.0

Parallel
framework

Open MPI 4.1.4 Cray MPICH 8.1.18 Open MPI 4.1.4

Libraries

OpenFoam 2206 2112 2206

Table 7 Programming & runtime environment for UAP-RedSim benchmarks

 Karolina-GPU Vega-GPU LUMI-CPU

Compiler GNU GCC 12.2.0 GNU GCC 12.3.0 GNU GCC12.2.0

Compiler-GPU CUDA 11.3 CUDA 12.2.2 -

Parallel
framework

- -
Cray MPICH

8.1.27

Libraries

zlib - 1.2.13 -

Table 8 Programming & runtime environment for UAP-Xyst benchmarks

 Discoverer LUMI-CPU Meluxina-CPU

Compiler GNU GCC 11.3.0 g++ (SUSE Linux) 7.5.0 GNU GCC 11.3.0

Parallel
framework

Open MPI 4.1.4 Open MPI 4.1.4 Open MPI 4.1.4

Libraries

ninja - - 1.11.1

netCDF 4.9.0 4.9.0 4.9.0

netlib-lapack 3.10.1 3.10.1 3.10.1

Benchmarking configuration

The benchmarking of UAP-OpenFOAM is performed for a 3D simulation of the city of

Győr on multiple unstructured grids with varying sizes, number of iterations in

simpleFoam and simulated times in pimpleFoam. More specifically, three scenarios

are used, which are presented in Table 9.

The multi-GPU implementation of UAP-RedSIM is benchmarked for a 3D simulation

based on a tetrahedral unstructured mesh using the geometry of the city of Győr.

Additionally, it is benchmarked using Karman vortex calculations in 2D for various

mesh sizes. These 2D scenarios are also used to benchmark the multi-CPU

implementation of RedSIM. In total, 7 and 4 scenarios are used for benchmarking the

multi-GPU and multi-CPU implementations of UAP-RedSIM, respectively. Their details

are presented in Table 10.

Finally, for the benchmarking of UAP-Xyst, the Taylor-Green problem, which is widely

used in fluid dynamics for verification, is used. The system of equations solved is 3D

the Euler equations, augmented by a source term of the energy equation to ensure a

stationary 2D periodic vortical flow. The simulation domain is a cube centred around

Document name: D3.1 Scalability, Optimization and Co-Design Activities Page: 24 of 56

Reference: D3.1 Dissemination: PU Version: 1.1 Status: Final

 D3.1 Scalability, Optimization and Co-Design Activities

the point {0,0,0}. The initial conditions are sampled from the analytic solution at t=0.

We set Dirichlet boundary conditions on the sides of the cube, sampling the analytic

solution. The numerical solution does not depend on time and approaches a steady

state due to the source term which ensures equilibrium in time. As the numerical

solution approaches a stationary state, the numerical errors in the flow variables

converge to stationary values, determined by the combination of spatial and temporal

errors, which are measured and assessed.

The simulation is run for a single time unit to assess numerical errors. For the

benchmarking, only 10 time steps are taken, since the time taken by a single time step

is verified to be approximately equal for any time step. In total, 2 scenarios of varying

mesh sizes are used that are presented in Table 11.

Table 12 summarises the various scenarios used for benchmarking the three different

implementations of UAP’s CFD module.

Table 9 Details of UAP-OpenFOAM benchmarking scenarios

Scenario Mesh size Iterations Simulated time

Győr-728k 728,000 600 3600 s

Győr-3.4M 3,400,000 600 900 s

Győr-14M 14,000,000 400 100 s

Table 10 Details of UAP-RedSIM benchmarking scenarios

Scenario Mesh size Iterations UAP-RedSIM versions

Győr-2.1M 2,100,000 5000
multi-GPU

Győr-10.1M 10,100,000 1000

Karman-3.7M 3,700,000 5000

multi-GPU, multi-CPU
Karman-33.7M 33,700,000 500

Karman-60.0M 60,000,000 25

Karman-184M 184,000,000 125

Karman-375M 375,000,000 50 multi-GPU

Table 11 Details of UAP-Xyst benchmarking scenarios

Scenario Mesh size Iterations

TaylorGreen-144M 144,000,000 10

TaylorGreen-794M 794,000,000 10

Document name: D3.1 Scalability, Optimization and Co-Design Activities Page: 25 of 56

Reference: D3.1 Dissemination: PU Version: 1.1 Status: Final

 D3.1 Scalability, Optimization and Co-Design Activities

Table 12 Benchmarking scenarios for the different implementations of UAP’s CFD module

Code Scenario Mesh sizes

UAP-OpenFOAM Győr (3D) 728k, 3.4M, 14M

UAP-RedSIM
Győr (3D) 2.1M, 10.1M

Karman vortex (2D) 3.7M, 33.7M, 60M, 184M, 375M

UAP-Xyst Taylor-Green (3D) 144M, 794M

Results & Analysis

UAP-OpenFOAM

Figure 5, Figure 6 and Figure 7 depict the speedup achieved on LUMI, MeluXina and

Discoverer for the Győr-728k, Győr-3.4M and Győr-14M scenarios, respectively. In all

figures, we present results for the total execution (end-to-end) and the OpenFOAM

computational part (simulation).

For low mesh cell counts, multi node execution is not advantageous, as additional

nodes provide a slight benefit compared to single-node runs. For the medium-size

mesh, the performance is improved up to 16 nodes, and better efficiency is achieved

for up to 4 nodes. For the largest mesh, the efficiency peaks for 8 nodes for all three

EuroHPC machines; however, performance improvements slow down for more nodes.

Finally, the observed superlinear speedup for the larger meshes (Győr-3.4M and Győr-

14M) is due to memory bottlenecks suffered by the baseline execution on a single

node. Specifically, the data cannot fit in the L3 cache of the EuroHPC machines’ AMD

cores, impacting the performance of the single node. However, when more nodes are

used and the mesh is partitioned between them, data allocated to each node fits better

in the memory hierarchy of each CPU, leading to superlinear speedups.

Figure 5 UAP-OpenFOAM per node speedup for the Győr-728k scenario

Document name: D3.1 Scalability, Optimization and Co-Design Activities Page: 26 of 56

Reference: D3.1 Dissemination: PU Version: 1.1 Status: Final

 D3.1 Scalability, Optimization and Co-Design Activities

Figure 6 UAP-OpenFOAM per node speedup for the Győr-3.4M scenario

Figure 7 UAP-OpenFOAM per node speedup for the Győr-14M scenario

Figure 8, Figure 9 and Figure 10 show how the execution of UAP-OpenFOAM is split

between the computational part and the pre-processing part of the simulation. As the

length of the pre-processing stage depends on the mesh size, to compare the two

stages appropriately, we scale the simulated time to that of a production run for which

the simulated time is equal to one day or 86400 seconds and calculate the simulation

time accordingly.

Document name: D3.1 Scalability, Optimization and Co-Design Activities Page: 27 of 56

Reference: D3.1 Dissemination: PU Version: 1.1 Status: Final

 D3.1 Scalability, Optimization and Co-Design Activities

Figure 8 UAP-OpenFOAM execution breakdown for the Győr-728k scenario

Figure 9 UAP-OpenFOAM execution breakdown for the Győr-3.4M scenario

Document name: D3.1 Scalability, Optimization and Co-Design Activities Page: 28 of 56

Reference: D3.1 Dissemination: PU Version: 1.1 Status: Final

 D3.1 Scalability, Optimization and Co-Design Activities

Figure 10 UAP-OpenFOAM execution breakdown for the Győr-14M scenario

For small meshes, pre-processing can take up a significant portion of the execution.

However, as the size of the mesh increases, pre-processing becomes less significant

compared to the actual simulation, at least for low node counts. As the nodes increase

to 32 or 64 for Győr-3.4M and to 64 or 128 for Győr-14M, the simulation time is

decreased, and pre-processing becomes significant again.

UAP-RedSIM

For the benchmarking of the multi-GPU implementation of UAP-RedSIM, two different

problems of various sizes were used. Figure 11a presents the achieved speedup on

Karolina and Vega for the 3D simulations (Győr-2.1M and Győr-10.1M scenarios),

while Figure 11b shows the achieved speedup for the 2D simulations on Karolina

(Karman-3.7M, Karman 33.7M and Karman-60M scenarios).

For both problems, as the size of the mesh gets larger, UAP-RedSIM scales better,

achieving almost linear speedup for 8 GPUs on Karolina. At the same time, the larger

sizes cannot be executed for a small number of GPUs, as they do not fit in the memory

and the executions fail with an out-of-memory error (for 1 GPU running Karman-184M

and for 1 and 2 GPUs running Karman-375M).

The same two problems have also been used for the benchmarking of the multi-CPU

implementation of UAP-RedSIM on LUMI. Figure 12a presents the achieved speedup

for the 3D simulations (Győr-2.1M and Győr-10.1M scenarios), while Figure 12b shows

the achieved speedup for the 2D simulations (Karman-3.7M, Karman 33.7M and

Karman-60M scenarios). The causes for sublinear and superlinear speedup behaviour

are still under investigation.

Document name: D3.1 Scalability, Optimization and Co-Design Activities Page: 29 of 56

Reference: D3.1 Dissemination: PU Version: 1.1 Status: Final

 D3.1 Scalability, Optimization and Co-Design Activities

Figure 11 Speedup of multi-GPU implementation of UAP-RedSIM

Figure 12 Speedup of multi-CPU implementation of UAP-RedSIM

(a) Győr (3D) scenarios

(b) Karman vortex (2D) scenarios

(a) Győr (3D) scenarios

(b) Karman vortex (2D) scenarios

Document name: D3.1 Scalability, Optimization and Co-Design Activities Page: 30 of 56

Reference: D3.1 Dissemination: PU Version: 1.1 Status: Final

 D3.1 Scalability, Optimization and Co-Design Activities

UAP-Xyst

Figure 13 and Figure 14 depict the speedup achieved for UAP-Xyst when running the

Taylor-Green-794M scenario on LUMI, MeluXina and Discoverer, and the scenario

Taylor-Green-144M scenario on MeluXina, respectively.

In general, UAP-Xyst scales very well. The superlinear speedup observed in the case

of MeluXina can be attributed to the larger amount of memory per node compared to

the other two EuroHPC systems (512MB on each MeluXina node versus 256MB on

each LUMI and Discoverer node), which combined with the partitioning of the problem

between the nodes causes the data to fit into the processors’ memory hierarchy a lot

quicker when scaling the number of nodes. The lack of scalability beyond 32 nodes on

Discoverer is currently under investigation.

Finally, regarding the smaller scenario illustrated in Figure 14, UAP-Xyst’s strong

scalability plateaus at about 9K elements per compute core (at 128 nodes), beyond

which point communication becomes a bottleneck limiting the scalability.

Figure 13 UAP-Xyst per node speedup for the Taylor-Green-794M scenario

Document name: D3.1 Scalability, Optimization and Co-Design Activities Page: 31 of 56

Reference: D3.1 Dissemination: PU Version: 1.1 Status: Final

 D3.1 Scalability, Optimization and Co-Design Activities

Figure 14 UAP-Xyst per node speedup for the Taylor-Green-144M scenario

4.3 Urban Building (UB)

4.3.1 Pilot description

The Urban Building (UB) pilot aims to simulate the energy behaviour of buildings from

a neighbourhood to the city level and beyond. The simulation outcomes encompass

each building’s thermal comfort, energy consumption, and air quality. We aim to obtain

these predictions over a span ranging from one month to an entire year, reflecting a

realistic environment by considering factors like weather, occupancy, and surrounding

vegetation.

UB examines several building and district models with varying degrees of accuracy.

We refer to this differentiation as the Level of Detail (LOD), and the current

classification is as follows:

 LOD-0: Buildings are represented as oriented bounding boxes.

 LOD-1: Buildings are depicted as (multi-)polygonal extrusions, optionally including

roof shapes.

 LOD-2: Buildings are detailed from an Industry Foundation Classes (IFC) [19]

description encompassing many intricate details.

The pilot is developed within the Ktirio-UB framework [20]. Its main components that

enable the execution of the UB simulation workflow are the following:

 GIS data generation: A geographic area containing buildings, e.g. a district or a

city, provides the input data required by the city energy simulation. The

implemented solution employs open databases on the web, such as

Document name: D3.1 Scalability, Optimization and Co-Design Activities Page: 32 of 56

Reference: D3.1 Dissemination: PU Version: 1.1 Status: Final

 D3.1 Scalability, Optimization and Co-Design Activities

OpenStreetMap [19], and allows the generation of building entities (terrain,

buildings, vegetation, etc.) through JSON files and mesh files (LOD-0 and LOD-1).

It is written in C++ and uses multiple threads.

 Building Model definition: UB uses the Modelica language [22] to model physical

systems, which are translated to C++ applications using the Functional Mock-up

Interface (FMI) [23].

 City energy simulator: A C++ library designed to compute the solution of a city

energy model parametrised by GIS data, LOD, building models and scenarios

(time period based on which weather forecast and solar direction are provided). It

is based on the Feel++ library [24] and produces several output values using

various formats. It is currently parallelised based on a distributed approach using

MPI and leverages a data partitioner to allocate data to each computing core.

Support for multithreading is currently in progress.

4.3.2 Benchmarking

Systems & Environment

UB has been benchmarked on three EuroHPC JU systems: Discoverer, Karolina and

MeluXina. To move from one HPC system to another without requiring installations of

additional packages to satisfy its dependencies, the pilot leverages containers through

Apptainer. The containers ensure the UB programming environment (including

backend packages) is reusable at any time and independent of the underlying

machine, guaranteeing the reproducibility of results. Consequently, across the different

EuroHPC systems, only the hardware layer (and tightly coupled libraries like MPI)

varies, and pilot deployment is done by updating a SIF image. The programming and

runtime environments used in each system are detailed in Table 13.

Table 13 Programming & runtime environment for UB benchmarks

 Discoverer Karolina MeluXina

Compiler (container) Clang 14 Clang 14 Clang 14

Compiler (MPI) GCC 12.3.0 GCC 12.2.0 GCC 12.3.0

Parallel framework Open MPI 4.1.5 Open MPI 4.1.4 OpenMPI 4.1.6

Libraries

Apptainer 1.2.4 1.1.5 1.2.4

Python 3.10.4 3.10.4 3.9.7

Benchmarking configuration

For the benchmarking activities reported in this deliverable, UB has selected two

scenarios that are presented in Table 14. In order to get an insight into how the size of

the city area under study affects the performance, benchmarking has been performed

using two different area sizes.

Document name: D3.1 Scalability, Optimization and Co-Design Activities Page: 33 of 56

Reference: D3.1 Dissemination: PU Version: 1.1 Status: Final

 D3.1 Scalability, Optimization and Co-Design Activities

Table 14 Details of Ktirio-UB benchmarking scenarios

Scenario Area Location Period
Building

Model
LOD Area size

0-M1 Square centred
in Strasbourg

city
July

Radiative &
convective

heat transfer
LOD-0

2km square side
(~6K buildings)

0-M2
4km square side
(~ 17K buildings)

Results & Analysis

To study the scalability of Ktirio-UB, we deploy the full Ktirio-UB pipeline using 1-32

nodes and 128 processes per node. Figure 15 and Figure 16 depict the speedup

achieved on Discoverer, Karoling and MeluXina for the 0-M1 and 0-M2 scenarios

respectively. In both figures, we present results for the total execution (end-to-end) of

the pipeline as well as the simulating component (simulation).

The simulation part of the pipeline scales almost linearly, which is expected as in the

model currently used for the simulation the buildings are not coupled together. On the

other hand, the total execution of the pilot’s pipeline does not scale; as more nodes

are employed the performance degrades.

Figure 15 Ktirio-UB per node speedup for the 0-M1 scenario

Document name: D3.1 Scalability, Optimization and Co-Design Activities Page: 34 of 56

Reference: D3.1 Dissemination: PU Version: 1.1 Status: Final

 D3.1 Scalability, Optimization and Co-Design Activities

Figure 16 Ktirio-UB per node speedup for the 0-M2 scenario

To better understand what causes this degradation, we measure the computing times

of the different stages of the pipeline and present the execution breakdown in Figure

17 and Figure 18 for scenarios 0-M1 and 0-M2 respectively. Both figures report the

portion of the total execution taken by:

 Pre-processing (Pre-proc): The time elapsed in initialization before entering the

time loop of the simulation

 Simulation (Simulation): The cumulative time spent calculating the new solution at

each time step

 Post-processing (Post-proc): The cumulative time spent for exporting results, i.e.,

generating files containing the output of the UB model.

Pre-processing does not scale. However, it occupies only a small part of the total

execution, and thus it is not performance-critical. On the other hand, as more nodes

are employed and the time spent in the actual simulation is decreased, the post-

processing stage dominates the execution. It becomes the main bottleneck, causing

the previously observed performance degradation.

This behaviour is caused by the multiple files being written in parallel on the shared file

system. More specifically, most of the writing time is spent in opening and closing files

in parallel. We are investigating potential solutions, such as asynchronous writes, data

caching, etc. Finally, as the project progresses, we expect the urban building models

used in the simulation to become more complex, leading to an increase in the time

occupied by the simulation part and, hence, to a reduction of the impact of post-

processing on the total execution time of the pilot.

Document name: D3.1 Scalability, Optimization and Co-Design Activities Page: 35 of 56

Reference: D3.1 Dissemination: PU Version: 1.1 Status: Final

 D3.1 Scalability, Optimization and Co-Design Activities

Figure 17 Ktirio-UB execution breakdown for the 0-M1 scenario

Figure 18 Ktirio-UB execution breakdown for the 0-M2 scenario

4.4 Wildfires (WF)

4.4.1 Pilot description

The WF pilot operates at two levels: the landscape scale and the local urban scale. In

the former, WF simulates large forest fires under various meteorological

configurations, with particular attention to the variables that have the most significant

influence on the development of fire spread, such as wind speed and direction, as well

as the interactions between the lower atmosphere and the fire. In the latter, WF aims

Document name: D3.1 Scalability, Optimization and Co-Design Activities Page: 36 of 56

Reference: D3.1 Dissemination: PU Version: 1.1 Status: Final

 D3.1 Scalability, Optimization and Co-Design Activities

to incorporate in the outputs of the landscape scale level simulations of combustion

results from a wildfire affecting and progressing within an urbanised area. It includes

the generation and dispersion of smoke plumes using OpenFOAM and fireFOAM [25],

employs a much finer spatial and temporal resolution than the landscape scale using

sub-meter spatial resolution so that the working area is smaller, and uses as boundary

conditions the outputs of the landscape scale.

As the local urban scale is planned to be developed and integrated during the next

period of the project, the focus of the benchmarking activities presented in this

deliverable is the landscape scale. For this, to capture the dynamics of the atmosphere

and its influence and interaction with the spread of forest fires, WRF is combined with

two additional modules, SFIRE [26] for fire modelling and CHEM [27] for chemistry.

This way, the numerical model can simulate the emission, transport, and deposition of

air pollutants resulting from wildfires based on actual atmospheric conditions.

The WF workflow currently comprises two main parts:

 Pre-processing: The WRF Pre-processing Systems (WPS) prepares the input for

real-data simulations. It consists of three separate stages: first, the definition of

model domains and the interpolation of static geographical data to the grids (stage

1 – geogrid.exe); second, the extraction of meteorological fields from GRIB-

formatted files [28] (stage 2 – ungird.exe), and finally the horizontal interpolation

of the extracted meteorological fields in the second stage to the model grids

defined in the first stage (stage 3 – metgrid.exe). Each stage is executed only once

for each run of the pilot.

 Simulation: The simulation component consists of three stages as well: first, the

vertical interpolation of 3D meteorological fields and sub-surface soil data using

the 2D output of the pre-processing part and the creation of the boundary and initial

conditions that are fed into the next stages (stage 1 – real.exe); second, the

execution of the WRF model (stage 2 – wrf.exe), and third, the dynamical

downscaling using ndown (stage 3 – ndown.exe). In the latter stage, ndown is used

for one-way nesting and obtains the initial and lateral boundary conditions for the

fine-resolution domain from the coarse-resolution domain with input from higher

resolution terrestrial fields (e.g., terrain, land use, etc.) and masked surface fields,

such as soil temperature and moisture. Stage 1 is executed only once for each

pilot run, while stages 2 and 3 can be executed multiple times.

4.4.2 Benchmarking

Systems & Environment

WF has been benchmarked on the EuroHPC JU Vega system. The programming and

runtime environments used are detailed in Table 15.

Document name: D3.1 Scalability, Optimization and Co-Design Activities Page: 37 of 56

Reference: D3.1 Dissemination: PU Version: 1.1 Status: Final

 D3.1 Scalability, Optimization and Co-Design Activities

Table 15 Programming & runtime environment for WF benchmarks

 Vega

Compiler GCC-12.2.0

Parallel framework Open MPI v4.1.4

Libraries

zlib 1.2.12

jasper 2.0.33

libpng 1.6.37

HDF5 1.14

NetCDF-C 4.9.2

WRF-SFIRE 4.4

WPS 4.4

Benchmarking configuration

The primary benchmarking constraint of WF is that, depending on the spatial

decomposition, WRF imposes boundaries to the number of processes that can be

employed for the simulation. More specifically, the number of processes is chosen

taking into account their decomposition in relation to the size of the domains.

For processing, the domains are divided into tiles, the total number of which depends

on the total number of processors used (e.g. 1 tile per processor). Each tile has a

minimum of 5 rows/columns on each side (called “halo” regions), which pass

information from each cell/processor to the neighbouring tile. Additionally, the entire

tile should not only comprise halo regions, as there must be some space left for

computation in the middle of each tile; otherwise, the model will crash, or its output will

be unrealistic. To avoid this, the model divides the total number of grid spaces in the

west-east direction (e_we) by the number of tiles in the x-direction and tests that the

result is greater than 10. The same constraint must be true also for the south-north

direction (e_sn).

In order to get an insight into the performance of WF, benchmarking was performed

using two scenarios with different resolutions and different model pipelines. In terms

of simulation configuration, the two scenarios are defined in Table 16. For the small

scenario, all stages of the simulation are executed exactly only once. In contrast, for

the 2k_test scenario the second and third stages of the simulation are executed

multiple times. More specifically:

 WRF is run for D01 and D02.

 ndown is used to remap the output of D02 to input for D03.

 WRF is run for D0.

 ndown is used to remap the output of D03 to input for D04.

 WRF model is run for D04.

In both scenarios, the first 3 domains simulate atmospheric processes, while in the

fourth domain SFIRE is activated to simulate the interaction between the fire and the

atmosphere.

Document name: D3.1 Scalability, Optimization and Co-Design Activities Page: 38 of 56

Reference: D3.1 Dissemination: PU Version: 1.1 Status: Final

 D3.1 Scalability, Optimization and Co-Design Activities

Table 16 Details of WF benchmarking scenarios

Scenario D01 D02 D03 D04
Number of points per domain

e_we e_sn

small

9km 3km 1km

333.333m

D01 = 188
D02 = 202
D03 = 349
D04 = 277

D01 = 167
D02 = 172
D03 = 310
D04 = 286

2k_test 200m

D01 = 379
D02 = 520
D03 = 670
D04 = 636

D01 = 331
D02 = 373
D03 = 589
D04 = 576

Results & Analysis

To study the scalability of WF, we deploy its pipeline using 128 processes per node.

Due to the boundaries imposed by WRF, the small scenario can be deployed from 1

up to 6 nodes, i.e., using 128-768 processes, and the 2k_test scenarion from 2 up to

16 nodes, i.e., using 256-2048 processes. Figure 19 and Figure 20 depict the speedup

achieved in Vega for the two scenarios for both the total execution (end-to-end) of the

pilot as well as the WRF part(s) (simulation).

For the small scenario, the simulation scales almost linearly for up to 4 nodes and

flattens out for 6 nodes due to limited parallelism in the decomposition. However, as

the pre-processing is fixed, the end-to-end speedup is already limited at 4 nodes.

Figure 19 WF per node speedup for the small scenario

Document name: D3.1 Scalability, Optimization and Co-Design Activities Page: 39 of 56

Reference: D3.1 Dissemination: PU Version: 1.1 Status: Final

 D3.1 Scalability, Optimization and Co-Design Activities

Figure 20 WF per node speedup for the 2k_test using ndown for dynamic downscaling

On the other hand, the simulation cannot scale linearly for the 2k_test scenario. In this

case, the complex pipeline comprises multiple WRF invocations with subsequent

storing and loading data to and from the disk, limiting the scalability and achieving a

maximum 5x speedup for 10 nodes, with the performance degrading for a larger

number of nodes. At the same time, as the simulation is much more complex, pre-

processing becomes less significant in this case, and the total execution speedup

follows closely the simulation speedup.

To confirm the observations regarding pre-processing and its impact on the total

execution speedup, we present the execution breakdown in Figure 21 and Figure 22

for the small and 2k_test scenarios, respectively.

In both scenarios, the pre-processing stage occupies a larger part of the execution as

the number of employed nodes increases. This is because the computational time

decreases when running on more nodes, while pre-processing is always performed on

one node. However, as it is evident when comparing the small and 2k_test scenarios,

pre-processing becomes less significant as the simulation becomes more complex and

computationally intensive. Hence, we expect that pre-processing will not be a

bottleneck as the WF pilot matures and more complex scenarios are simulated. On the

other hand, as discussed before for Figure 20, I/O between multiple invocations of the

WRF model affects the performance and must be optimised to achieve better

scalability for complex, multi-staged pipelines.

Document name: D3.1 Scalability, Optimization and Co-Design Activities Page: 40 of 56

Reference: D3.1 Dissemination: PU Version: 1.1 Status: Final

 D3.1 Scalability, Optimization and Co-Design Activities

Figure 21 WF execution breakdown for the small scenario

Figure 22 WF execution breakdown for the 2k_test scenario

4.5 Summary & next steps

During its first year, HiDALGO2 has successfully kick-started the benchmarking of its

pilots on the HiDALGO2 HPC infrastructure, i.e. PSNC’s Altair and the EuroHPC JU

systems. More specifically:

 RES has been benchmarked on Altair and LUMI. In both systems the code

currently scales linearly up to 10 nodes, and on LUMI it is estimated that linear

speedup could be achieved for up to 32 nodes as the simulation becomes more

compute intensive for denser data inputs. Besides optimising the computational

Document name: D3.1 Scalability, Optimization and Co-Design Activities Page: 41 of 56

Reference: D3.1 Dissemination: PU Version: 1.1 Status: Final

 D3.1 Scalability, Optimization and Co-Design Activities

part of the pilot and improving its scalability, it has been deduced that the I/O of

the post-processing part needs to be parallelised as well.

 The three different codes of UAP have been benchmarked on five EuroHPC JU

systems. UAP-OpenFOAM has been executed on Discoverer, LUMI and

MeluXina, and for the larger meshes it currently scales up to 64 nodes. The multi-

GPU version of UAP-RedSIM has been benchmarked on Karolina and Vega, and

it currently scales up to 8 GPUs as the size of its input mesh gets larger. The multi-

CPU version of UAP-RedSIM has been executed on LUMI and it currently exhibits

sublinear speedups for larger inputs. Finally, UAP-Xyst has been benchmarked

on Discoverer, LUMI and MeluXina, and it currently scales linearly up to 512 nodes.

 UB has been benchmarked on Discoverer, Karolina and MeluXina. In all three

systems, the code currently scales linearly up to 32 nodes. However, its total

execution does not scale, due to the post-processing stage which becomes the

main bottleneck by writing in parallel on multiple files.

 WF has been benchmarked on Vega. It currently scales linearly up to 4 nodes only

for the smaller, simpler benchmarking scenario and does not scale for the larger,

more complex scenario that involves more pipeline stages leading to multiple

invocations of the WRF model.

HiDALGO2 has identified multiple KPIs related to benchmarking and optimisation

activities and is committed to achieve ambitious targets. Table 17 presents the current

status of these KPIs based on the benchmarking activities that have been reported in

Section 4.

Table 17 Status of benchmarking and optimisation related KPIs in M12

KPI Target M12 Comments

Applications with a
scalability of 50k cores
in a single run

≥ 3 1

Scalable runs with more than 50k
cores (512 nodes with 128 cores
each) have already been achieved by
UAP-Xyst.

Applications with a
scalability of 200k cores
in a single run

≥ 1 0
We expect to reach our target by
around the end of the project’s third
year.

Applications with a
scalability of 80k cores
in ensemble runs

≥ 3 0
No work has been performed yet for
ensemble runs.

Applications with parallel
efficiency improved by
30%

≥ 3 0

Activities in the first year of the
project have focused on
benchmarking, i.e., on setting the
baseline for all pilots. Optimisation
activities will essentially start in the
second year of the project, and we
expect to meet our KPI target around
the end of the third or the start of the
fourth year of the project.

Document name: D3.1 Scalability, Optimization and Co-Design Activities Page: 42 of 56

Reference: D3.1 Dissemination: PU Version: 1.1 Status: Final

 D3.1 Scalability, Optimization and Co-Design Activities

The targets set for the scalability-related KPIs have not been met yet. This is expected,

though, as in the first year of the project, we focused on deploying the pilots on the

EuroHPC JU systems and benchmarking them in order to set their baseline. As

optimisation activities will start in the project’s second year, we expect to improve these

KPIs in the forthcoming periods.

More specifically, during the project’s second year, the benchmarking of the pilots will

continue as they advance and are optimised. The main next steps can be summarised

as follows:

 Complete integration with ReFrame: All pilots must finalise their integration with

ReFrame. RES is considering replacing their internal, in-house scheduler with

ReFrame. UAP needs to finalise the integration of all UAP implementations with

ReFrame on all EuroHPC JU systems, and for WF I/O issues need to be solved,

especially for complex pipelines with multiple resolution enhancing steps.

 Extend deployment on EuroHPC JU systems: As Table 1 in Section 3.2

highlights, pilots currently have access to a subset of the available EuroHPC JU

systems and intend to acquire access to more.

 Profiling and bottleneck analysis: The initial benchmarking reported in this

deliverable has already identified a few performance issues. It is essential to focus

on these, employing profiling and tracing to detect and analyse the bottlenecks that

are responsible for them. Towards this end, we plan to rely on tools that are readily

available or can be easily installed on all EuroHPC JU systems. More specifically,

we plan to collect profiles and traces using Vampir [29] and Score-P [30], that were

also used successfully in the HiDALGO project.

Document name: D3.1 Scalability, Optimization and Co-Design Activities Page: 43 of 56

Reference: D3.1 Dissemination: PU Version: 1.1 Status: Final

 D3.1 Scalability, Optimization and Co-Design Activities

5. HiDALGO2 Co-Design Activities

This section tackles the issues related to the scalability of solutions and the optimal

adaptation of the software to the infrastructure (co-design) by using the appropriate

benchmarking methodology and algorithmic optimisation methods. One of the main

goals is to determine general strategies for co-designing the HiDALGO2 pilots.

5.1 HiDALGO2 strategy

HiDALGO2 aims to explore current and next-generation HPC architectures to identify

promising technologies that can impact the project’s goals, by enabling efficient, highly

performant systems to simulate complex structures with much higher accuracy,

performance and energy efficiency. Our strategy is not to limit our investigation to the

different computing systems offered by the EuroHPC JU centres, but to leverage our

close cooperation with IT vendors such as Intel, AMD, and NVIDIA and acquire access

to systems equipped with a various processors and accelerators.

In particular, we plan to explore HPC solutions based on cutting-edge x86 processors

from vendors, such as Intel and AMD, as a starting point for the co-design activity.

Specifically, a series of top-of-the-line AMD EPYC CPUs with a wide range of CPU

products based on Rome, Milan, Milan-X, Genoa, Genoa-X, and Bergamo

architectures are under investigation. In the successive periods of the project, we plan

to extend our investigation to the newest ARM-based product lines for HPC solutions.

At the same time, we focus on novel GPU accelerators from NVIDIA and AMD.

One of the main targets of co-design activities is utilising current and future computing

systems better and more efficiently. To that end, our activities will focus on the required

adaptations of the software in order to leverage the capabilities of the underlying

hardware platforms. In that context, we distinguish different targets of the co-design

process, including but not limited to optimisation aspects for intra- and inter-node

communication, as well as data read from or written to HPC storage systems.

In general, the co-design activities will be carried out for both CPU and GPU-based

applications. Our main goal is to understand the correlation between the application

and the underlying platform and to determine appropriate synergies between the

hardware and a given parallel code. We will analyse trade-offs between performance,

memory, and energy consumption to determine the relation between application

requirements and system capabilities in terms of balance between, e.g., memory

capacity, bandwidth and computing resources. To achieve that, we will follow a robust

benchmarking methodology, assessing the performance of applications and acquiring

reliable activity profiles. Finally, once performance bottlenecks and associated trade-

offs have been established, we will apply a wide range of known optimisation

techniques to increase execution efficiency.

Document name: D3.1 Scalability, Optimization and Co-Design Activities Page: 44 of 56

Reference: D3.1 Dissemination: PU Version: 1.1 Status: Final

 D3.1 Scalability, Optimization and Co-Design Activities

6. Conclusions

This deliverable has defined the HiDALGO2 benchmarking methodology, drawing

lessons from the HiDALGO project. This generic, systematic methodology for

collecting benchmarking information and storing benchmarking results is centred

around the usage of ReFrame, which, besides managing the deployments and

executions on the various HPC centres, will help ensure the reproducibility and

validation of gathered results.

During the first year of the HiDALGO2 project, we focused primarily on deploying the

HiDALGO2 pilots on the EuroHPC JU systems. The process of acquiring resources

was cumbersome, but at the end of the first reporting period, all pilots have been

deployed and benchmarked on at least one EuroHPC JU system. Deployment onto

more systems will continue in the second year of the project as well, targeting

especially the pre-exascale machines, i.e., Leonardo, that became available recently,

and Marenostrum 5, which is expected to become available in 2024.

Initial benchmarking has revealed that one of the HiDALGO2 codes (UAP-Xyst) scales

linearly up to 512 nodes, while the others currently scale up to a few dozen nodes. A

few potential bottlenecks related to I/O have been identified and will serve as the first

target for the optimisation activities, which will start in the project’s second year. Finally,

we have defined the HiDALGO2 strategy for the project’s co-design activities, which

will be further elaborated and presented together with initial findings in deliverable D3.4

“Innovative HPC Technologies and Benchmarking (M15)”.

Document name: D3.1 Scalability, Optimization and Co-Design Activities Page: 45 of 56

Reference: D3.1 Dissemination: PU Version: 1.1 Status: Final

 D3.1 Scalability, Optimization and Co-Design Activities

7. References

[1] (2023), Homepage of HiDALGO CoE, https://hidalgo-project.eu/ [retrieved: 2023-

12-31]

[2] (2023), Homepage of ReFrame, https://reframe-hpc.readthedocs.io/en/stable/

[retrieved: 2023-12-28]

[3] (2023), ReFrame test suite of CSCS¸ https://github.com/reframe-hpc/cscs-

reframe-tests [retrieved: 2023-12-31]

[4] (2023), EPCC ReFrame repository, https://github.com/reframe-hpc/epcc-reframe-

tests [retrieved: 2023-12-31]

[5] (2023), ReFrame tests for HPC2N and C3SE, https://github.com/reframe-

hpc/hpc2n-tests [retrieved: 2023-12-31]

[6] (2023), A portable test suite for software installations,

https://github.com/EESSI/test-suite [retrieved: 2023-12-31]

[7] (2023), ExCALIBUR tests, https://github.com/ukri-excalibur/excalibur-tests

[retrieved: 2023-12-31]

[8] (2023), Homepage of OpenFOAM, https://www.openfoam.com/ [retrieved: 2023-

12-28]

[9] (2023), Homepage of Apptainer, https://apptainer.org/ [retrieved: 2023-12-28]

[10] (2023), WRF wiki page,

https://en.wikipedia.org/wiki/Weather_Research_and_Forecasting_Model

[retrieved: 2023-12-28]

[11] M. Z. Ziemiański, M.J. Kurowski, Z.P. Piotrowski, B. Rosa, O. Fuhrer, “Toward

very high horizontal resolution NWP over the Alps: Influence of increasing model

resolution on the flow pattern”, Acta Geophysica, 59, 2011, 1205 – 1235

[12] Z. Piotrowski, A. Wyszogrodzki, P. Smolarkiewicz, Piotr, “Towards Petascale

Simulation of Atmospheric Circulations with Soundproof Equations”, Acta

Geophysica, 59, 2011, 1294-1311.

[13] (2023), Homepage of Global Forecasting System,

https://www.ncei.noaa.gov/products/weather-climate-models/global-forecast

[retrieved: 2023-12-31]

[14] L. Környei, Z. Horváth, A. Ruopp, A. Kovacs, and B. Liszkai. “Multi-scale

Modelling of Urban Air Pollution with Coupled Weather Forecast and Traffic

Simulation on HPC Architecture”. In Proceedings of the International Conference

on High Performance Computing in Asia-Pacific Region Companion (HPC Asia

2021), 2021

[15] (2023), SimpleFoam documentation,

https://doc.openfoam.com/2212/tools/processing/solvers/rtm/incompressible/simp

leFoam/ [retrieved: 2023-12-31]

https://hidalgo-project.eu/
https://reframe-hpc.readthedocs.io/en/stable/
https://github.com/reframe-hpc/cscs-reframe-tests
https://github.com/reframe-hpc/cscs-reframe-tests
https://github.com/reframe-hpc/epcc-reframe-tests
https://github.com/reframe-hpc/epcc-reframe-tests
https://github.com/reframe-hpc/hpc2n-tests
https://github.com/reframe-hpc/hpc2n-tests
https://github.com/EESSI/test-suite
https://github.com/ukri-excalibur/excalibur-tests
https://www.openfoam.com/
https://apptainer.org/
https://en.wikipedia.org/wiki/Weather_Research_and_Forecasting_Model
https://www.ncei.noaa.gov/products/weather-climate-models/global-forecast
https://doc.openfoam.com/2212/tools/processing/solvers/rtm/incompressible/simpleFoam/
https://doc.openfoam.com/2212/tools/processing/solvers/rtm/incompressible/simpleFoam/

Document name: D3.1 Scalability, Optimization and Co-Design Activities Page: 46 of 56

Reference: D3.1 Dissemination: PU Version: 1.1 Status: Final

 D3.1 Scalability, Optimization and Co-Design Activities

[16] (2023), PimpleFoam documentation,

https://doc.openfoam.com/2212/tools/processing/solvers/rtm/incompressible/pim

pleFoam/ [retrieved: 2023-12-31]

[17] J. Bakosi, “Open-source complex-geometry 3D fluid dynamics for applications

with unpredictable heterogeneous dynamic high-performance-computing loads”,

Computer Methods in Applied Mechanics and Engineering, Volume 418, Part B,

2024.

[18] (2023), Homepage of Charm++, https://charmplusplus.org/ [retrieved: 2023-

12-28]

[19] (2024), IFC: Industry Foundation Classes standards,

https://technical.buildingsmart.org/standards/ifc/ [retrieved: 2024-07-01]

[20] (2024), Ktirio Urban Building Framework, https://feelpp.github.io/ktirio-urban-

building/ktirio-urban-building/index.html [retrieved: 2024-07-01]

[21] (2023), OpenStreetMap Wiki, https://wiki.openstreetmap.org/wiki/Main_Page

[retrieved: 2023-12-31]

[22] (2023), Homepage of Modelica association, https://modelica.org/ [retrieved:

2023-12-28]

[23] (2023), Homepage of FMI standard, https://fmi-standard.org/ [retrieved: 2023-

12-28]

[24] (2023), Github page of feel++, https://github.com/feelpp/feelpp [retrieved:

2023-12-28]

[25] (2023), FireFoam wiki page, https://openfoamwiki.net/index.php/FireFoam

[retrieved: 2023-12-28]

[26] (2023), Open wildland fire modelling Wiki, https://wiki.openwfm.org/wiki/WRF-

SFIRE [retrieved: 2023-12-31]

[27] (2023), Official WRF-Chem web page, https://ruc.noaa.gov/wrf/wrf-chem/

[retrieved: 2023-12-31]

[28] (2023), GRIB definition in Wikipedia, https://en.wikipedia.org/wiki/GRIB

[retrieved: 2023-12-31]

[29] (2023), Vampir wiki page, https://hpc-wiki.info/hpc/Vampir [retrieved: 2023-12-

28]

[30] (2023), Score-P wiki page, https://hpc-wiki.info/hpc/Score-P [retrieved:2023-

12-28]

https://doc.openfoam.com/2212/tools/processing/solvers/rtm/incompressible/pimpleFoam/
https://doc.openfoam.com/2212/tools/processing/solvers/rtm/incompressible/pimpleFoam/
https://charmplusplus.org/
https://technical.buildingsmart.org/standards/ifc/
https://feelpp.github.io/ktirio-urban-building/ktirio-urban-building/index.html
https://feelpp.github.io/ktirio-urban-building/ktirio-urban-building/index.html
https://wiki.openstreetmap.org/wiki/Main_Page
https://modelica.org/
https://fmi-standard.org/
https://github.com/feelpp/feelpp
https://openfoamwiki.net/index.php/FireFoam
https://wiki.openwfm.org/wiki/WRF-SFIRE
https://wiki.openwfm.org/wiki/WRF-SFIRE
https://ruc.noaa.gov/wrf/wrf-chem/
https://en.wikipedia.org/wiki/GRIB
https://hpc-wiki.info/hpc/Vampir
https://hpc-wiki.info/hpc/Score-P

Document name: D3.1 Scalability, Optimization and Co-Design Activities Page: 47 of 56

Reference: D3.1 Dissemination: PU Version: 1.1 Status: Final

 D3.1 Scalability, Optimization and Co-Design Activities

Annexes – HiDALGO2 ReFrame scripts examples

Annex I

cluster_config_file.py

Directory path of reframe_feelpp folder

start_path = '/home/users/xexpanas/atheodor/cemosis'

Directory where ReFrame will make temporary copies of the sourcedir for

each test.

temp_directory = '/home/users/xexpanas/atheodor/cemosis/stage'

Directory where ReFrame will copy its output files and the files

contained in output_files variable.

output_directory = start_path+'/output'

#############################

Site Configuration Object #

#############################

max_cores_per_node=48

import socket

hostname = socket.gethostname()

site_configuration = {

 'systems': [

 {

 'name': 'eagle',

 'descr': 'eagle',

 'hostnames': ['eagle'],

 'modules_system': 'tmod32',

 'prefix': start_path,

 'stagedir': temp_directory,

 'outputdir': output_directory,

 'partitions': [

 {

 'name': 'altair',

 'scheduler': 'slurm',

 'launcher': 'custom_mpiexec',

 'access': ['--partition=altair'],

 'environs': ['cemosis'],

 'container_platforms':[

 {

 'type': 'Apptainer',

 }

],

 'max_jobs': 8,

 },

]

 },

 {

 'name': 'discoverer',

 'descr': 'discoverer',

 'hostnames': ['login\d+.discoverer.sofiatech.bg','cn*'],

 'modules_system': 'tmod4',

Document name: D3.1 Scalability, Optimization and Co-Design Activities Page: 48 of 56

Reference: D3.1 Dissemination: PU Version: 1.1 Status: Final

 D3.1 Scalability, Optimization and Co-Design Activities

 'prefix': start_path,

 'stagedir': temp_directory,

 'outputdir': output_directory,

 'partitions': [

 {

 'name': 'cn',

 'scheduler': 'slurm',

 'launcher': 'srun',

 'access': ['--partition=cn --account=ehpc-dev-2023d08-

025 --qos=ehpc-dev-2023d08-025'],

 'environs': ['env_discoverer'],

 'container_platforms':[

 {

 'type': 'Singularity'# 'Apptainer',

 }

],

 'max_jobs': 8

 }

]

 },

 {

 'name': 'karolina',

 'descr': 'karolina',

 'hostnames':

['login\d+.karolina.it4i.cz','cn\d+.karolina.it4i.cz'],

 'modules_system': 'lmod',

 'prefix': start_path,

 'stagedir': temp_directory,

 'outputdir': output_directory,

 'partitions': [

 {

 'name': 'qcpu',

 'scheduler': 'slurm',

 'launcher': 'srun',

 'access': ['--partition=qcpu --account DD-23-129'],

 'environs': ['env_karolina'],

 'container_platforms':[

 {

 'type': 'Singularity'# 'Apptainer',

 }

],

 'max_jobs': 8

 }

]

 },

 {

 'name': 'meluxina',

 'descr': 'meluxina',

 'hostnames': [f'{hostname}'],

 'modules_system': 'lmod',

 'prefix': start_path,

 'stagedir': temp_directory,

 'outputdir': output_directory,

 'partitions': [

 {

 'name': 'cpu',

 'scheduler': 'slurm',

 'launcher': 'srun',

Document name: D3.1 Scalability, Optimization and Co-Design Activities Page: 49 of 56

Reference: D3.1 Dissemination: PU Version: 1.1 Status: Final

 D3.1 Scalability, Optimization and Co-Design Activities

 'access': ['--partition=cpu --account p200229 --

time=02:00:00 --qos=default'],

 'environs': ['env_meluxina'],

 'container_platforms':[

 {

 'type': 'Apptainer',

 }

],

 'max_jobs': 8

 }

]

 }

],

 'environments': [

 {

 'name': 'cemosis',

 'modules': ['openmpi/4.0.0_gcc620'],

 'cc': 'gcc',

 'cxx': 'g++',

 'target_systems': ['eagle:altair']

 },

 {

 'name': 'env_discoverer',

 'modules': ['openmpi/4/gcc/latest'],

 'target_systems': ['discoverer:cn']

 },

 {

 'name': 'env_karolina',

 'modules': ['OpenMPI/4.1.4-GCC-12.2.0','apptainer'],

 'target_systems': ['karolina:qcpu']

 },

 {

 'name': 'env_meluxina',

 'modules': [' env/staging/2023.1', 'Apptainer/1.2.4-GCCcore-

12.3.0', 'OpenMPI/4.1.5-GCC-12.3.0'],

 'target_systems': ['meluxina:cpu']

 }

]

}

Document name: D3.1 Scalability, Optimization and Co-Design Activities Page: 50 of 56

Reference: D3.1 Dissemination: PU Version: 1.1 Status: Final

 D3.1 Scalability, Optimization and Co-Design Activities

Annex II

benchmarking.py

import os

from cluster_config_file import start_path

#############################

System specific variables #

#############################

platform_used = ['Apptainer']

system=['eagle:altair']

prog_environment=['cemosis']

Commands to run before execution

prerun_commands=[]

Different input files. Must be list of lists.

input_files=[[]]

Source directory containing all files needed for execution. Its the

directory

that will be copied.

source_directory=None

Container commands

sif_path =

'/home/users/xexpanas/atheodor/cemosis/singularity/feelpp_v0.111.0-

preview.7-focal.sif'

apptainer_home_general =

'/home/users/xexpanas/atheodor/cemosis/apptainer_home'

select_case = 'Case3'

command_for_container = "feelpp_toolbox_heat \

 --config-file

/usr/share/feelpp/data/testcases/toolboxes/heat/cases/Building/ThermalBridg

esENISO10211/case3.cfg \

 --case.discretization=P2 \

 --heat.scalability-save=1"

Import slurm variables.

nodes_pre=[1]

tasks_per_node_pre=[1, 2, 4, 8, 12, 24, 36, 48]

exclusive_access_pre=True

Not required.

tasks_pre=-1 # list of tasks per run.

cores_per_task_pre=-1 # int

Output files

output_files_pre=[]

######################

Bitbucket upload ##

######################

scenario_name = 'test_scenario'

Document name: D3.1 Scalability, Optimization and Co-Design Activities Page: 51 of 56

Reference: D3.1 Dissemination: PU Version: 1.1 Status: Final

 D3.1 Scalability, Optimization and Co-Design Activities

Annex III

main.py

import os

import csv

import json

import reframe as rfm

import reframe.utility.sanity as sn

import reframe.utility.udeps as udeps

import sys, getopt

from datetime import datetime

from reframe_lib import *

from benchmarking import *

from cluster_config_file import *

@rfm.simple_test

class Feelpp(rfm.RunOnlyRegressionTest):

 '''

 Run feelpp using apptainer.

 '''

 platform = platform_used

 valid_systems = system

 valid_prog_environs = prog_environment

 number_of_nodes = parameter(nodes_pre)

 tasks_per_node = parameter(tasks_per_node_pre)

 exclusive_access=exclusive_access_pre

 sourcesdir = source_directory

 keep_files = output_files_pre

 inputs = parameter(input_files)

 input_file=variable(str)

 prerun_cmds = prerun_commands

 @run_after('init')

 def setup_container_platf(self):

 '''

 Setup Apptainer.

 '''

 self.apptainer_home = os.path.join(apptainer_home_general,

self.short_name)

 self.descr = f'Run commands inside a container using {self.platform}'

 self.container_platform.image = sif_path

 self.container_platform.command = command_for_container

 self.container_platform.options=[f'--home {self.apptainer_home}']

 self.container_platform.workdir=None

 os.mkdir(self.apptainer_home)

 self.logs_path =

self.apptainer_home+'/feelppdb/toolboxes/heat/ThermalBridgesENISO10211/'+

select_case

 @run_before('run')

 def set_resources(self):

 '''

Document name: D3.1 Scalability, Optimization and Co-Design Activities Page: 52 of 56

Reference: D3.1 Dissemination: PU Version: 1.1 Status: Final

 D3.1 Scalability, Optimization and Co-Design Activities

 Sets resource variables for Slurm.

 '''

 if tasks_pre==-1 and cores_per_task_pre==-1:

 self.num_tasks = self.tasks_per_node * self.number_of_nodes

 self.num_cpus_per_task = 1

 self.num_tasks_per_node = self.tasks_per_node

 elif tasks_pre==-1:

 self.num_tasks = self.tasks_per_node * self.number_of_nodes

 self.num_tasks_per_node = self.tasks_per_node

 max_cores = altair_harware_cores_per_node

 if max_cores < self.tasks_per_node * cores_per_task_pre:

 raise BadSlurmVariablesException("Feelpp: Each node has only

"+str(max_cores)+" cores.")

 else:

 self.num_cpus_per_task = cores_per_task_pre

 elif cores_per_task_pre==-1:

 idx = tasks_pre.index(self.tasks_per_node)

 if tasks_pre[idx] != nodes_pre * tasks_per_node_pre:

 raise BadSlurmVariablesException("Feelpp: Tasks must be

equal to nodes * tasks_per_node.")

 self.num_tasks = tasks_pre[idx]

 self.num_cpus_per_task = 1

 self.num_tasks_per_node = self.tasks_per_node

 else:

 idx = tasks_pre.index(self.tasks_per_node)

 if tasks_pre[idx] != nodes_pre * tasks_per_node_pre:

 raise BadSlurmVariablesException("Feelpp: Tasks must be

equal to nodes * tasks_per_node.")

 self.num_tasks = tasks_pre[idx]

 self.num_tasks_per_node = self.tasks_per_node

 max_cores = altair_harware_cores_per_node

 if max_cores < self.tasks_per_node * cores_per_task_pre:

 raise BadSlurmVariablesException("Feelpp: Each node has only

"+str(max_cores)+" cores.")

 else:

 self.num_cpus_per_task = cores_per_task_pre

 @run_before('performance')

 def set_git_data(self):

 '''

 Prepare for git upload.

 '''

 self.upload_data = upload_data

 self.upload_data['system_name'] = str(self.current_system)

 self.upload_data['processes'] = self.num_tasks

 # Timestamp in UTC

 self.upload_data['date'] =

datetime.utcfromtimestamp(int(self.job.completion_time)).strftime('%Y-%m-

%d_%H:%M:%S')

 # Find log file

 self.upload_data['repo_filename'] = "dt-%s_procs-%d.log" %

(self.upload_data['date'], self.upload_data['processes'])

 self.upload_data['logfile_path'] = self.prefix+'/logs/'

 self.upload_data['repo_destination_path'] = "%s/%s/%s/%s/%s/" %

(self.upload_data['local_repo_path'], self.upload_data['pilot_name'],

self.current_system.name, self.upload_data['file_type'],

self.upload_data['scenario_name'])

Document name: D3.1 Scalability, Optimization and Co-Design Activities Page: 53 of 56

Reference: D3.1 Dissemination: PU Version: 1.1 Status: Final

 D3.1 Scalability, Optimization and Co-Design Activities

 #------- HeatConstructor -------#

 @performance_function('')

 def extract_HeatConstructor_names(self, pos=1):

 '''Name of performance variables for HeatConstructor data file.'''

 return sn.extractsingle(rf'nProc[\s]+([a-zA-z\-]+)[\s]+([a-zA-z\-

]+)[\s]+([a-zA-z\-]+)[\s]+([a-zA-z\-]+)[\s]+([a-zA-z\-]+)[\s]+([a-zA-z\-

]+)[\s]+([a-zA-z\-]+)[\s]+([a-zA-z\-]+)[\s]+',

 self.logs_path+'/heat.scalibility.HeatConstructor.data', pos, str)

 @performance_function('sec')

 def extract_HeatConstructor(self, nProc=48, pos=1):

 '''Performance extraction function for HeatConstructor data file.'''

 return sn.extractsingle(rf'{nProc}[\s]+([0-9e\-\+\.]+)[\s]+([0-9e\-

\+\.]+)[\s]+([0-9e\-\+\.]+)[\s]+([0-9e\-\+\.]+)[\s]+([0-9e\-

\+\.]+)[\s]+([0-9e\-\+\.]+)[\s]+([0-9e\-\+\.]+)[\s]+([0-9e\-\+\.]+)[\s]+',

 self.logs_path+'/heat.scalibility.HeatConstructor.data', pos,

float)

 #------- HeatPostProcessing -------#

 @performance_function('')

 def extract_HeatPostProcessing_names(self, pos=1):

 '''Name of performance variables for HeatPostProcessing data file.'''

 return sn.extractsingle(rf'nProc[\s]+([a-zA-z\-]+)',

 self.logs_path+'/heat.scalibility.HeatPostProcessing.data', pos,

str)

 @performance_function('sec')

 def extract_HeatPostProcessing(self, nProc=48, pos=1):

 '''Performance extraction function for HeatPostProcessing data

file.'''

 return sn.extractsingle(rf'{nProc}[\s]+([0-9e\-\+\.]+)',

 self.logs_path+'/heat.scalibility.HeatPostProcessing.data', pos,

float)

 #------- HeatSolve -------#

 @performance_function('')

 def extract_HeatSolve_names(self, pos=1):

 '''Name of performance variables for HeatSolve data file.'''

 return sn.extractsingle(rf'nProc\s+([a-zA-z\-]+)[\s]+([a-zA-z\-

]+)[\s]+([a-zA-z\-]+)[\s]+([a-zA-z\-]+)',

 self.logs_path+'/heat.scalibility.HeatSolve.data', pos, str)

 @performance_function('sec')

 def extract_HeatSolve(self, nProc=48, pos=1):

 '''Performance extraction function for HeatSolve data file.'''

 return sn.extractsingle(rf'{nProc}[\s]+([0-9e\-\+\.]+)[\s]+([0-9e\-

\+\.]+)[\s]+([0-9e\-\+\.]+)[\s]+([0-9e\-\+\.]+)',

 self.logs_path+'/heat.scalibility.HeatSolve.data', pos, float)

 @run_before('performance')

Document name: D3.1 Scalability, Optimization and Co-Design Activities Page: 54 of 56

Reference: D3.1 Dissemination: PU Version: 1.1 Status: Final

 D3.1 Scalability, Optimization and Co-Design Activities

 def set_perf_variables(self):

 '''Build the dictionary with all the performance variables.'''

 self.perf_variables = {}

 # HeatConstructor

 for v in range(1,9,1):

self.perf_variables.update({str(self.extract_HeatConstructor_names(pos=v)):

self.extract_HeatConstructor(nProc=self.num_tasks, pos=v)})

 # HeatPostProcessing

 for v in range(1,2,1):

self.perf_variables.update({str(self.extract_HeatPostProcessing_names(pos=v

)): self.extract_HeatPostProcessing(nProc=self.num_tasks, pos=v)})

 # HeatSolve

 for v in range(2,5,1):

self.perf_variables.update({str(self.extract_HeatSolve_names(pos=v)):

self.extract_HeatSolve(nProc=self.num_tasks, pos=v)})

 @sanity_function

 def assert_done(self):

 '''

 Asserts correct execution for each step of the test.

 '''

 step1 = sn.assert_found('\\[32m \[success\] \\[00m\|

Normal_Heat_Flux_alpha', self.stdout)

 step2 = sn.assert_found('\\[32m \[success\] \\[00m\|

Normal_Heat_Flux_beta', self.stdout)

 step3 = sn.assert_found('\\[32m \[success\] \\[00m\|

Normal_Heat_Flux_gamma', self.stdout)

 step4 = sn.assert_found('\\[32m \[success\] \\[00m\|

Points_alpha_min_field_temperature', self.stdout)

 step5 = sn.assert_found('\\[32m \[success\] \\[00m\|

Points_alpha_max_field_temperature', self.stdout)

 step6 = sn.assert_found('\\[32m \[success\] \\[00m\|

Points_beta_min_field_temperature', self.stdout)

 step7 = sn.assert_found('\\[32m \[success\] \\[00m\|

Points_beta_max_field_temperature', self.stdout)

 step8 = sn.assert_found('\\[32m \[success\] \\[00m\|

Statistics_temperature_alpha_min', self.stdout)

 step9 = sn.assert_found('\\[32m \[success\] \\[00m\|

Statistics_temperature_beta_min', self.stdout)

 return step1 and step2 and step3 and step4 and step5 and step6 and

step7 and step8 and step9

 @run_before('cleanup')

 def create_log(self):

 ''' Build the final log. '''

 new_names = []

 new_values = []

 with

open(self.current_system.prefix+'/perflogs/'+self.current_system.name+'/'+s

elf.current_partition.name+'/'+self.short_name+'.log', 'r') as fp_r:

 lines = fp_r.readlines()

 names = lines[0].split(',')

Document name: D3.1 Scalability, Optimization and Co-Design Activities Page: 55 of 56

Reference: D3.1 Dissemination: PU Version: 1.1 Status: Final

 D3.1 Scalability, Optimization and Co-Design Activities

 values = lines[1].split(',')

 display_name = values[2]

 _,number_of_nodes,tasks_per_node,inputs = display_name.split('

')

 number_of_nodes_name, number_of_nodes_value =

number_of_nodes.split('=')

 new_names.append(number_of_nodes_name[1:])

 new_values.append(number_of_nodes_value)

 tasks_per_node_name, tasks_per_node_value =

tasks_per_node.split('=')

 new_names.append(tasks_per_node_name[1:])

 new_values.append(tasks_per_node_value)

 new_names.append(names[3])

 new_values.append(values[3])

 new_names.append(names[4])

 new_values.append(values[4])

 new_names.append(names[5])

 new_values.append(values[5])

 for i in [8,13,18,23,28,33,38,43,48,53,58,63]:

 new_names.append(names[i]+'_'+values[i+1])

 new_values.append(values[i])

 with

open(self.prefix+'/temp_logs/'+self.upload_data['repo_filename'], 'w') as

fp_w:

 csv_file = csv.writer(fp_w)

 csv_file.writerow(new_names)

 csv_file.writerows([new_values])

 @run_before('cleanup')

 def upload_to_bitbucket(self):

 upload_to_git(self.upload_data,

self.upload_data['repo_destination_path'],

create_log(start_path+'/reframe_feelpp'))

##############

Git #

##############

def create_log(run_dir):

 csv_files = glob.glob(run_dir+'/temp_logs/'+'*.{}'.format('log'))

 df_csv_append = pd.DataFrame()

 tmstmp = datetime.now().timestamp()

 date = datetime.utcfromtimestamp(int(tmstmp)).strftime('%Y-%m-

%d_%H:%M:%S')

 filename = "dt-%s.log" % (date)

 for file in csv_files:

 df = pd.read_csv(file)

 df_csv_append = df_csv_append.append(df)

 df_csv_append = df_csv_append.to_csv(run_dir+'/logs/'+filename,

mode='x', index=False, index_label=False)

 return filename

upload_data={

Document name: D3.1 Scalability, Optimization and Co-Design Activities Page: 56 of 56

Reference: D3.1 Dissemination: PU Version: 1.1 Status: Final

 D3.1 Scalability, Optimization and Co-Design Activities

 'repo_url':

'ssh://atheodor@cslab.ece.ntua.gr@git.man.poznan.pl/hidalgo2/hid-bench-

ub.git',

 'local_repo_path': start_path+'/HIDALGO2_benchmarking',

 'logfile_path': start_path+'/perflogs',

 'pilot_name': 'UB',

 'system_name': 'PSNC',

 'file_type': 'benchmark',

 'scenario_name': scenario_name,

 'processes': 128,

 'date': "None"

}

def is_git_repo(path):

 try:

 _ = git.Repo(path)

 return True

 except git.InvalidGitRepositoryError:

 return False

def upload_to_git(upload_data, repo_destination_path, repo_filename):

 print ("repo_destination_path = %s" % repo_destination_path)

 print ("repo_filename = %s" % repo_filename)

 print ("logfile_path = %s" % upload_data['logfile_path'])

 if is_git_repo(upload_data['local_repo_path']):

 print("%s is a Git repository. Pulling..." %

upload_data['local_repo_path'], end="")

 repo = git.Repo(upload_data['local_repo_path'])

 repo.remotes.origin.pull()

 else:

 print("%s is not a Git repository. Cloning..." %

upload_data['local_repo_path'], end="")

 repo = git.Repo.clone_from(upload_data['repo_url'],

upload_data['local_repo_path'])

 print("successful.")

 print(repo)

 os.makedirs(repo_destination_path, exist_ok=True)

 shutil.copy(upload_data['logfile_path'] + repo_filename,

repo_destination_path + repo_filename)

 repo.index.add([repo_destination_path + repo_filename])

 repo.index.commit("Added %s to repo." %(repo_destination_path +

repo_filename))

 origin = repo.remote('origin')

 origin.push()

